Business Application Components
Tom Digre

Senior Member Technical Saff

Business Application Components
Information Technology Group
Texas Instruments, Inc.

6620 Chase Oaks Blvd. MS 8417
Plano, Texas 75023
E-mail:digre@ti.com Fax: 214-575-2866

ABSTRACT. Information Technology is being driven by the need for rapid provisioning of
business solutions within an environment of increasing complexity.  Component-based
architecture principles and complexity-hiding model-based development techniques will
empower users to dynamically change business processes, workflows, rules, policies,
presentation, and other aspects of their environment.

KEY WORDS: component, devel opment, architecture, semantics, complexity.

1. I ntroduction

Global business competition and a shift from commodity to custom products has created an
environment of continuous business structure change. In order to effectively compete,
businesses are constantly revisiting products, processes, suppliers, and customer care-abouts.
As shown in “Figure 1 Business Drivers’, a primary business driver for Information Technology
includes the profit-oriented objective to decrease time-to-market for products and services
[WIRTHMAN 95] within an environment of increasing business complexity [MARTIN 91]
resulting from accelerating changes to products, processes, customers, partners, and Information
Technology. A successful information strategy will accommodate these business drivers by
provisioning business solutions at a rate commensurate with the increasing rate of business
structural change.



Large commercial applications

16000 I are getting more complex

8000
Complexity:
100 Log(FP) 4000
Weeks 20
1000
1975

Source: [Martin 91]

Average Time-To-Market
|s Reducing

1992 1998

Y ear
Source: Pittiglio Rabin Todd & McGrath [WIRTHMAN 95]

Figure 1 BusinessDrivers

Rapid solution delivery in response to continuous business process changes requires direct
involvement of empowered users to dynamically change their business processes, workflows,
rules, policies, presentation, and other aspects of their environment. Impediments to achieving
these goals have been technological and organizational barriers between business and the
enterprise’'s information technology. Enterprise IT organizations are on the critical path to
achieving the IT productivity, performance, and cycle time gains necessary to support business
change.

2. Coping with Complexity

IT organizations are severely challenged to meet the solution provisioning cycle time
requirements imposed by business. These organizations are facing the dilemma of minimal
software productivity improvements, particularly when using third generation languages such as
COBOL, C++, and Smalltalk. A fundamental problem with software solutions implemented
using 3GL istheinability to cope with increasing business complexity. Asdepicted in “Figure 2

2000



Software Complexity”, as complexity increases there is an adverse impact on productivity,
quality, delivery cycle time, and cost [MARTIN 91].

30

£ Productivity 2 Cycle Time
g 5
S o]
2 10 E
S z
5 g
s g
z <
0 0
0 2000 0 2000
Exposed Complexity (Function Points using 3GL) Exposed Complexity (Function Points using 3GL)
. Defects 2 %°| Integrated CASE;
g 8 Model-Based
2 o
g 8 Developm
; :
° £
e =
z >
= <]
0 & 0
0 2000 0 2000

. . . . Complexity (Function Points)
Exposed Complexity (Function Points using 3GL)

Figure 2 Software Complexity

Software productivity depends not only on sheer bulk but also on “surface area’, the number of
things that must be understood and properly dealt with in order to successfully enable
interoperability between software components [COX 87]. Factors influencing surface area
include:
Amount of visible information. Surface area increases with the number of names that are
exposed through the software component interface, including data element names, data
types, and function names.
Sequence dependencies. Surface area increases with each requirement that the software
component user must perform operationsin a particular order.
Environment and responsibility scope dependencies. Surface area increases whenever the
software component user is responsible for managing lifecycle, persistence, location, or
environmental aspects of software components within a more global application context.
Technology dependencies. Surface area increases with exposure to each technical domain
and form of interface, including middleware communications, data storage.
Concurrency. Surface area increases when concurrency issues are exposed to the software
component user.



Use of third generation languages typically increase exposed “surface area’ proportiona to
increases in underlying complexity. This is the fundamental problem: the complexity of the
entire IT solution space, including the underlying IT infrastructure, is exposed to the solution
provider. It is the exposed “surface area’, not the underlying complexity, that impedes progress.
Contrast software productivity with gains achieved in hardware componentization, as shown in
“Figure 3 Need for Componentization Concepts’. Hardware complexity has increased by nearly
2% in the last 30 years, and it has been accomplished with minimal increase of surface area.
While semiconductor (and downstream hardware) technology has consistently sustained an
annual doubling of productivity and performance gains, significant software productivity gains
have not materialized. Business application software continues to be characterized by surface
areaincreases commensurate with complexity increases.

Log 5% Componentized Hardware

Performance/$
Capability/$
Application Software
(Function Points/Person month)
< 10x/30 yrs

2%
1965 . 1995
Time
IT Software should be based on same
s = nrinciples that enable doubling hardware
OBJECTIVE component performance and capability each year

Figure 3 Need for Componentization Concepts

The success of the semiconductor industry to successfully manage complexity inspired Brad Cox
to reflect on the potential for software componentization (as paraphrased from [COX 87]):

Gordon Moore, the chairman of Intel Corporation, once predicted that the number of
components on a silicon integrated chip would continue to double yearly. The prediction, now
known as Moore's law, has held up remarkably well during the twenty years I’ ve been in this
business. One of its many implications is that during the same period that my productivity has
been growing arithmetically with each improvement in programming language technology, the
productivity of my friends in the hardware industry has been growing geometrically as the
capability of the building blocks that they work with doubled each year for twenty years. My
productivity certainly improved in moving from assembly language to FORTRAN to C to Lisp.
But it certainly did not improve by the million-fold increase implied by Moore's law: 2* =
1,048,576.



Board designers routinely reuse the work of circuit designers, who reuse the efforts of workers at
even lower levels - wafer manufacturers, mask fabricators, printing shops. Communication
channels (trade magazines) allow suppliers to communicate with potential consumers, and
consumers have catalogs, filing systems, performance tests, price comparisons for selecting
among multiple suppliers. The impressive vitality of the marketplace in reusable hardware
componentsis legendary.

The appeal of all this is the possibility that the software industry might obtain some of the
benefits that the silicon chip brought to the hardware industry; the ability of a supplier to deliver
a tightly encapsulated unit of functionality that is specialized for its intended function, yet
independent of any particular application. The silicon chip is the unit of hardware reusability
that has most conspicuously contributed to the hardware productivity boom. Might the
Software-1C concept do the same for software?

Hardware IC componentization is an iterative process of encapsulating function, then using that
function as the semantic basis for the next iteration of function delivery. Each iteration is
starting at a higher conceptual level. The geometric function increase did not occur by going
back to NAND gates, it occurred by raising the conceptual foundation for each iteration. The
component user “assembles’ the solution from increasingly sophisticated components to satisfy
his unique engineering requirement. He assembles logical components directly into Application
Specific Integrated Circuits. The resulting aggregate component has its function integrity
maintained across the continual changes of infrastructure resulting from manufacturing process
technology improvements. To protect both the consumer and the manufacturer, component
reuse occurs at the design level and is criticaly dependent upon semantic clarity of exposed
functionality.

Exploitation of these component concepts within the software domain will be aided by open
standards for specification of component syntax and semantics; the existence of a marketplace
(suppliers and consumers) for reusable software components; and tools for the construction of
components and consequent assembly of components into solutions. Together, the component
concept and supporting tools will enable the business user to:

Directly provision his business solution.

Express his specification in aform consistent with the problem domain.

Focus “surface area” exposure on the business problem domain. All underlying

technological and implementation complexity will be hidden.

Software is often viewed as creative technological “art” derived from solitary, mental, abstract
activity akin to mathematics or novel writing. However, there is increasing consumer demand
to establish manufacturing and engineering discipline in the production of software, driven by
the need to build and use commercialy robust repositories of trusted, stable components whose
properties can be understood and tabulated in standard catalogs, like the handbooks of other
mature engineering domains [COX 90]:

The denizens of the software domain, from the tiniest expression to the largest application, are
as intangible as any ghost. And because we invent them all from first principles, everything we
encounter there is unique and unfamiliar, composed of components that have never been seen



before and will never be seen again, and that obey laws that don't generalize to future
encounters. Software is a place where dreams are planted and nightmares harvested, an
abstract, mystical swamp where terrible demons compete with magical panaceas, a world of
werewolves and silver bullets. As long as all we can know for certain is the code we ourselves
wrote during the last week or so, mystical belief will reign over quantifiable reason. Terms like
“computer science’ and “software engineering' will remain oxymorons -- at best, content-free
twaddle spawned of wishful thinking and, at worst, a cruel and selfish fraud on the consumers
who pay our salaries.

The “software industrial revolution' means ... transforming programming from a solitary cut-to-
fit craft into an organizational enterprise like manufacturing. This means allowing consumers at
every level of an organization to solve their own software problems as home owners solve
plumbing problems: by assembling their own solutions from a robust commercial market in off-
the-shelf subcomponents, which are in turn supplied by multiple lower level echelons of
producers.

3. Component-based Solution Provisioning

A component-based IT architecture is founded on well-defined information components that can
be specialized and/or assembled into applications. The architecture recognizes that components,
including tools and services, can be purchased from external vendors (e.g., desktop tools);
specialized and assembled by users (e.g., user-developed financial analysis); or developed by the
IT provisioner. The component-based architecture defines the platform, or board, on which
these reusable components can fit together.

Cycle time reduction goals require active participation by the business user. Ultimate cycle time
reduction will occur when the business user is able to express his problem in a form consistent
with his problem domain and have that specification automatically and instantly implemented.
Building on component concepts and the need for solution provisioning directly by business
users, an open component-based architecture will feature plug and play components and end-
user empowerment. It is recognized that the goal of end-user solution provisioning will require
cultural changes within the enterprise work force leading to a sharing of responsibility between
the business user and the Information Technology provisioner.

Within the component-based architecture scenario, the business user will assume the
responsibility for solution provisioning, as shown in “Figure 4 Component-based Solution
Provisioning”. The role of solutions provisioning will migrate from the enterprise’s Information
Services organization to the business. The business user will be empowered to:

Administrate business rules, work flows, and presentation.

Specialize and assemble components into solutions using Enterprise modeling tools.

The Information Technology provisioner will provision reusable components that can be
combined to form solutions by the business user. The IT provisioner will:
Provison components through purchase, construction, or specialization and assembly of
finer-grained components.



Business -l i IT
User /-’_ E\ Provisioner

Solution
Provisioner

Component
Assembler

Business
Rules
Administrator

Work Flow
Administrator

Work Flows

Component

Buyer
[@
4 s

Component
Builder

Presentation

Tools

Services Functions

Reusable Components

Figure4 Component-based Solution Provisioning

Encapsulate purchased and legacy systems so they can be utilized as reusable, inter-operable
components.

Share Components with business users. The shared components include business rules, work
flows, presentations, services, functions, and tools.

All provisioning roles are inextricably tied to components. All roles specialize and assemble
components. In most cases, the product of assembly isitself a reusable component. Cycle time
reduction and business semantic integrity is ultimately dependent upon end-user assembly of
these components.

When a business condition changes, the resulting modification to software is envisioned to occur
only in those components directly associated with the changing business specification.
Components will be loosely coupled, the impact of changes will be isolated to those components
associated with the business semantic.

4. Component-based Architecture

A component-based architecture will help achieve the vision of business user solution
provisoning. The component-based architecture shown in “Figure 5 Component-based
Architecture” is built upon layers of technology successively enabling capability on the path
towards user-empowered solution assembly. The architectural structure is motivated by OMG-
defined architectures [OMG 95.01.02, OMG 93.12.29, OMG 95.01.12] augmented with the



concept of an Enterprise Integration Model that exposes relevant, domain-specific semantics
of business application components to a suite of user empowerment tools.

The technology layers of the architecture include:
Platforms, operating systems, database management systems, networks, and other
fundamental software infrastructure components. This layer of technology currently enables
rapid and transparent installation/replacement of tailorable infrastructure components within
a broad range of reliability, performance, capacity, and price characteristics.  These
infrastructure components are no longer on the critical path to achieving objectives such as
business solution cycle time reduction and end-user empowerment.  Applications built
directly on thislayer are typically characterized as monolithic and centric.
ORB(Object Request Broker). Using any of a variety of middleware communications
mechanisms, this layer of technology typically enables construction of client/server
applications founded on syntactic interoperability. CORBA is an example implementation
[OMG 93.12.29]. The following features characterize components using this technology
layer:
Implementation and location transparency. Clients are unaware of the location of
server software components or their implementation details. Component
implementation and location can change dynamically, without any modification to
the client.
Universally accessible on federated enterprise ORBs.
Physical black-box encapsulation of related services.
Programming language independent. All component public interfaces are defined in
IDL (Interface Definition Language).
- Extensible, reusable specifications. Interface specifications can be inherited.
Object Services. A set of fundamental services necessary to implement distributed
applications. The services encompass distributed concepts of object relationships,
concurrency, persistence, transactions, etc. [OM G 95.01.12]
Facilities. Industrial adoption of a business component interoperability standard is on the
critical path to definition and implementation of Business Application Components. A
business component interoperability standard would enable specification of Business
Application Components having the following characteristics:
Rigorous Semantics which enable plug-and-play, extensibility integrity,
comprehension and control by business user.
Fully traceable life cycle, from business process engineering through deployment and
continuing to final disposition.
Vertical Domains. For each business domain, a set of plug and play Business Application
Components compliant with industry-standard specifications. Industry standards are
expected to evolve from activities of OMG Specia Interest Groups and industrial consortia
such as SEMATECH and OAG.
Enterprise Integration Model. Provides for tailoring and integration of vertical domain
components within an enterprise. Characterized by:
Context sensitivity, which enables domain-specific specification while maintaining
cross-domain integrity and integration within the enterprise.



Complexity-hiding views which aid the process of empowering business users to
directly provision their solutions.
Reuse through concepts of abstraction context inheritance, model-based
specifications, and synthesis.
Versionable configurations of components.
Business User Empowerment. A suite of tools interoperating with the Enterprise
Integration Model, including business rule tools, work flow tools, presentation tools,
software assembly tools, data access tools, and integrated CA SE tools.

Assembly

Vertical
Domains

| < Lifecycle Interoperability;
Semantic Interoperability
< Distributed Applications |
Object Services
Client/Server Applications;
Syntactic Interoperability

Platforms < Monolithic Applications |

Figure5 Component-based Architecture

5. M odel-based Development

The goals of the component-based architecture include:
Business Semantic Integrity
Rapid provisioning of business solutions,
Reduction of “surface area’.

These goal s are coupled with an environment of increasing complexity in the areas of:

Business.
Technology.



Architecture. The component-based architecture which has been outlined has, perhaps,
orders of magnitude more implementation complexity than contemporary application
architectures.

As discussed in the “Coping with Complexity” section, there is a need to identify principles
which would enable geometric productivity gains in software provisioning. Such gains are
plausible using a model-based development approach. Such an approach would handle
increasing complexity with minimal gain of surface area. The basic principle is to iteratively
utilize generic constructs formulated at one level of abstraction as the “language” and semantic
for the next level of specialization.

The complexities of using Object Services directly from 3GL code will be prohibitive for most
application development organizations. Consequently, model-based development will
practically become a necessity above the “ORB” layer of the architecture, and will likely
encompass all architectural layers. Although model-based development is applicable to all
architectural layers, the “Enterprise Integration Model” encompasses the most demanding
aspects of model based devel opment.

The (conceptual) Enterprise Integration Model (EIM) requires a set of tightly coupled concepts
to support Business Application Component Engineering. Some of the concepts of EIM are
reflected in conventional OO methodologies and toolsets. However, even for those few concepts
which are conventionally available, the current implementations are digoint, incomplete, and
lack automation, rigor, consistency and integrity. Model-based development at the Enterprise
Integratlon Model layer include the following, largely orthogonal, concepts:

Lifecycle

Behavior

Relations

Speciadlization

Context

Genericity

Version

View

5.1. Lifecycle

The concept of life cycle encompasses a set of inter-related activities and artifacts related to
Business Application Components. The life cycle is generally partitioned into the following
“ phaseﬂ but this should not necessarily imply that a “waterfall” lifecycle is being advocated:

Business Process Engineering

Analysis

Design

Implementation

Construction

Deployment

Transition



Business Application Component Provisioning will generally be performed using the following

life cycle strategies[OM G 92.10.01]:
Non-staged, knowledge-based development. This approach does not place any management
controls over the sequence of steps and their placement within stages. The steps are
performed in any sequence, but the work is always constrained by the knowledge-base (rules
of the method). For example the rules may prevent the recording of an operation unless it
can be attached to an object type; or may define what constitutes a complete and correct
object definition.
Additive progression. Each stage adds more objects and more details to the model or design
produced in the previous stage. This enables concurrent stage development, maintains
traceability, avoids artificial “brick walls’ between stages, and minimizes re-work when
changes are needed in earlier stages. This approach avoids transformational strategies
(including manual transformations). Note that a transformation may still be needed to
“generate” the code and database designs of the production system. Enactable specifications
are used during development to enable direct and immediate execution of designs.
Incremental implementation. The underlying infrastructure, in conjunction with the EIM,
enable incremental implementation of business application components and semantics. For
example, adding new relationships (and enforced referential integrity) between components
should be implementable without modification to any of the participant components.

Consistency must be automatically maintained between artifacts within al lifecycle stages. In
particular, changes must be constrained by or propagated to, as appropriate, dependent artifacts
in other stages.

Activities of the lifecycle, particularly during later stages, should be automated to the extent
possible. Techniques include automated code generation of “construction” deliverables and
knowledge-based synthesis of design artifacts from analysis.

5.2. Behavior

A model of objects should rigorously specify behavioral and static semantics. The model should
rigorously and declaratively specify concepts of states, events, triggers, operations, attributes,
constraints, invariants, pre-conditions, post-conditions, interactions, business rules, and
transactional integrity.

5.3. Relationships

Some forms of business semantics can be expressed using the inter-object relationship concepts
of arelationship model.

The relationship model within EIM enables specification of complexity-reduction concepts such
asvirtual attributes and virtual functions [BAPAT 94]. These concepts simplify usage of the
EIM by enabling attributes or functions to “appear” as if they belonged in one object type, but
are actually executed in arelated object type (possibly via multi-staged relationship traversal).
Similarly, virtual relationships, based on semantics of role-pairs, can be used to capture
indirect relationships within a single specification element. Virtual relationships can be used to
clarify or refine business semantics when specializing objects.



Aggregates are complex object types consisting of simpler object types called components.
Components may themselves be aggregates. The concept of aggregation is a special case within
the General Relationship Model. There is no semantic differentiation between aggregation and
other forms of relations. Aggregation should be used within EIM to aid in hierarchically
structuring solutions based on one or more perspectives of a problem domain. The EIM should
allow specification of severa independent aggregation hierarchies. Components may appear in
one or more independent aggregation hierarchies. Within each aggregation hierarchy:

A component can appear in one or more aggregations.

Both concrete and abstract components can appear in an aggregation.

A component in an aggregation can itself be an aggregation.

Recursive aggregation is permitted (e.g., a component in the aggregation can be the

aggregation itself).

An aggregate has an independently specified cardinality for each of its components.

An aggregate may be subclassed. The new subclass may extend the aggregation definition by
adding new components or subtyping existing components, providing it does not violate any
rules of the aggregation superclass, including any cardinality constraints. Aggregates, as a form
of relationship, utilize complexity reduction concepts of virtual attributes, functions, and
relationships.

5.4. Specialization

EIM specialization/generalization concepts facilitate extensions to the behavioral model through
inheritance mechanisms. Constraints on inheritance are well defined from specialization theory
[BAPAT 94] and apply to permissible specializations of operations, attributes, states, pre-
conditions, post-conditions, etc. Additionally, specialization theory interprets, defines
permissible specializations of, and places restrictions on, relationships inherited by objects.
These inheritance implications require a level of syntactic and semantic clarity in the object
model which is often missing in conventional methodologies and tool sets.

5.5. Context

The roles and responsibilities of enterprise elements can best be expressed within domain-
specific contexts [DSOUZA 94]. Domain-specific contexts reduce exposed complexity and
enable visualization of semantically related elements. Contexts can be considered a set of
overlapping views, or filters, of the Enterprise Integration Model. A context explicitly restricts
exposure of enterprise element details, but the semantic constraints of the underlying model are
implicitly maintained. Modal contexts may be used to provide controlled exposure (e.g., visual
rendering) of model fragments such as nested aggregations.

5.6. Genericity

Genericity is the staged refinement of entire models (see “Figure 6 Genericity: Inheriting
Industrial Models’) [ESPRIT 93]. The concept uses stepwise instantiation to go from
aggregations of generic components, through increasing specializations of business domains, to
enterprise, facility, and work area implementations. Genericity is a controlled process which



utilizes principles of specialization, inheritance, relationships, and contexts to leverage reusable
industrial models and rapidly provision tailored business solutions.

The concept of genericity should be used to specialize the “language” and semantics appropriate
for each business domain. The business language should be defined in terms of higher level
generic constructs. Subdomain specialization will in turn be defined in terms of domain
constructs.

| Generic Business Model |

| Financial | | Manufacturing | |Te|ecommunications| |
[
[ I I |
| Automotive | | Semiconductor | | Petroleum | | |
I
I ]
| Motorola | |Texas|nstruments| | Intel | | |

I | I |
|Faci|ityx| |Faci|ityy| |Faci|ityz| | |

Figure 6 Genericity: Inheriting Industrial Models

5.7. Version

All elements within the EIM are continualy evolving [WJ 93]. Versioning keeps track of the
evolution of each EIM element. Closely associated with versioning is configuration
management, which manages a set of individual versions of model elements.

58. View

View concepts provide the final reduction in exposed surface area and empower the end user to
directly interact with the EIM. The view concept is based on virtual object types [BAPAT 94],
whose members are completely determined by certain criteria satisfied by members of another
object type. The primary mechanisms which form the basis of virtual object types are selection
(using arbitrary set-partitioning selection criteria), projection (e.g., list of attributes and functions
to be exposed), and conjunction (related object types). Virtual object types are often coupled
with security mechanisms to constrain attribute and operational access by end users.

Virtual object types, used in conjunction with other virtualizing concepts can significantly
enhance semantic recognition by the end user while reducing or eliminating complexity clutter.
The following forms of exposed surface area reduction (complexity hiding) are enabled by these
concepts:
Hiding attributes and operations.
Hiding relationships by:
Compressing multiple object typesinto single virtual objects.
Compressing multiple relationships into single virtual relationships.
Hiding objects (through selection criteria).



6. Example

As an example of how principles of componentization and the Enterprise Integration Model
might work in practice, consider the business needs associated with manufacturing equipment.
This single physical component within the enterprise is often viewed from many perspectives,
including:
- Manufacturing process. Process specification, material delivery, monitor and control,
quality, scheduling, capacity planning, etc.
Facilities. Spatial requirements, safety, consumable delivery,
liqui d/gas/power/communication supplies, emergency procedures, installation, etc.
Financial. Asset inventory, purchase orders, supplier contracts, depreciation, product
manufacturing cost, etc.
Operations.  Operator training requirements, skills, scheduling, charge-outs, operating
procedures, reprocessing, alignment, handling, etc.
Maintenance.  Parts hill of material, diagnostic procedures, periodic maintenance
requirements, equipment performance, etc..

It is not unusual to find these perspectives implemented by completely independent systems
which have little or no interoperability. A new business requirement crossing these boundaries
may take considerable time to implement and would suffer semantic entropy during the process
of communicating business needsto IT provisioners.

In an EIM scenario, each perspective could have been independently evolved, during different
time frames, with incremental non-obtrusive implementation strategies. Employing the concepts
of specialization and genericity, each perspective may have been independently derived from
standard domain models, specialized down to the specific requirements of the work area.
Contexts would be used to reduce exposed complexity within each domain while ensuring
underlying enterprise model integrity. A new business requirement, which typically involves
business rule, workflow, or GUI modification, would have a solution directly implemented by
the business user. The business user would implement his solution utilizing EIM-aware tools in
conjunction with a combination of EIM views exposing only the relevant business semantics
(see “Figure 7 Example: Using the Enterprise Integration Model”).



/ Enterpris ion M odel BN

Financial Context
anufacturj gCont%

\W @fg

ﬁ:ll ies Context @ ﬁ @ alnte%nceConte\xt\
\_ " &

Inter-Domaln Business View

U % S /
;/ User BEmpowermengiservicessay

ions Contex

Presentations Sub Assemblies W orkflows Business Rules

Figure 7 Example: Using the Enterprise Integration M odel

7. Semantic Extensionsto OMG Standards

OMG's central mission is to establish an architecture and set of specifications to enable
distributed integrated applications. Primary goals are the reusability, portability and
interoperability of object-based software components in distributed heterogenous environments.
Much of the effort to date has been to establish an enabling infrastructure based on open and
standard interface definitions. While the enabling infrastructure will have positive impact on the
enterprise, orders of magnitude higher impact will be achieved through rapid delivery of
interoperable business application components.

Business application components do not exist in isolation. Rigorous and concise semantics are
required to ensure enterprise integrity, particularly as empowered users directly provision their
business solutions using some form of component assembly paradigm. The Enterprise
Integration Model (EIM) embodies a set of tightly coupled concepts necessary to maintain
semantic integrity of business application components across the enterprise.

A natural extension of the OMG Architecture would be to formally define business domain
facilitiesin terms of the concepts specified within EIM. Such an architectural extension would:
Help resolve issues related to semantic integrity of business application components.
Lay afoundation for an OMG common business infrastructure.
Create atrue plug-and-play business component market.
Enable implementation of viable end-user solution assembly tools.



An opportunity to incorporate EIM concepts into the OMG Architecture may exist in the form of
aBOMSIG initiative. Thisinitiative is soliciting proposals for an OMG standard facility which
would serve as the underpinning technology for interoperable business components and many of
the concepts referenced in this paper.

8. Conclusion

For many industries, the most compelling business driver for IT is the need for rapid
provisioning of business solutions within an environment of increasing complexity. IT
organizations are having difficulty meeting these decreasing cycle time requirements,
particularly when increased business complexity has an adverse impact on software productivity,
quality, cost, and cycle time. The software industry could address these issues by applying
concepts of componentization. The benefits of this approach are exemplified by the integrated
circuit industry’s ability to consistently double producitivity and performance each year. Cycle
time reduction goals also require active participation by the business user. Ultimate cycle time
reduction will occur when the business user is able to express his problem in a form consistent
with his problem domain and have that specification automatically and instantly implemented.
Building on component concepts and the need for solution provisioning directly by business
users, an open component-based architecture will feature plug and play components and end-
user empowerment. This architecture is inherently more complex than contemporary application
architectures. The architecture will need to be implemented using a complexity-hiding model-
based development approach. Such an approach would iteratively utilize generic constructs
forumulated at one level of abstraction as the language and semantic for the next level of
specialization. Empowered business users will express their problem in their business language;
rapidly provision their solutions;, assemble, specialize, and customize business application
components. Technology complexity will be hidden, business semantics will be rigorously
enforced, and an Enterprise Integration Model will capture the enterprise-specific semantics
which allow business application components from multiple business domains to interoperate.

Abbreviations

BOMSIG Business Object Management Special Interest Group (OMG)

EIM Enterprise Integration Model

T Information Technology

OAG Open Applications Group

OMG Object Management Group

References

[BAPAT 94] Subodh Bapat, Object-Oriented Networks, Prentice Hall, 1994.

[COX 87] Brad J. Cox, Object Oriented Programming An Evolutionary Approach, .

Addison-Wesley Publishing Company, April 1987.



[COX 90] Brad J. Cox, Software Technologies of the 1990's, IEEE Software
Magazine, |EEE, November 1990.

[DSOUZA 94] Desmond D'Souza, Object-Oriented Analysis, Modeling, and Conceptual
Design, ICON Computing, Inc, Jan 1994.

[ESPRIT 93] ESPRIT Consortium AMICE, CIMOSA: Open System Architecture for
CIM, Springer-Verlag, 1993.

[MARTIN 91] James Martin, Rapid Application Development, Macmillan Publishing

Company, 1991.

[OMG 92.10.01] Object Management Group, Object Analysis and Design, Draft 7.0, 1
October 1992.

[OMG 93.12.29] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Revision 1.2, 29 December 1993.

[OMG 95.01.02] Object Management Group, Common Facilities Architecture, Revision
4.0, 3 January 1995.

[OMG 95.01.12] Object Management Group, Object Services Architecture, Revision 8.1,

12 January 1995.
[WIRTHMAN 95]  LisaWirthman, Timeisticking away, PC WEEK, July 24, 1995.
[WJ 93] Wakeman & Jowett, PCTE The Standard for Open Repositories, Prentice

Hall, 1993.



