
Business-Object Architectures and Standards

Cory Casanave

Data Access Corporation
14000 S.W. 119 Avenue, Miami, Florida 33186 USA

cory_casanave@omg.org

ABSTRACT: Business information systems have become an integrated part of the
modern enterprise and as such are required to enable the enterprise to serve and adapt
to complex and dynamic business needs. An application architecture based on “business
objects” is proposed as a way to build information systems to better meet these needs.
Business objects are defined as components of the information system that directly
represent the business model.

KEY WORDS: business object, interoperability, OMG BOMSIG, CORBA, Business
model.

BIOGRAPHY: Cory Casanave is the founder and a co-president of Data Access
Corporation, a developer of object-oriented application-development tools, and chairman
of the OMG Business Object Domain Task Force (BODTF) as well as a member of the
OMG board of directors.

1. Introduction

The quality of a company’s information system has become recognized as a strategic
corporate advantage. Information systems have become the backbone of the modern
enterprise and as such are crucial to its functioning. An organization with the appropriate
information tools can take advantage of business opportunities quickly and can adapt itself
to changing business requirements.

Despite advances in hardware, software, client/server technology, right-sizing, distributed
computing, and better methodologies, corporate information processing continues to fight
the complexity, inflexibility, and poor performance of its current mix of solutions.

As the enterprise has become more dependent on its information-processing capability,
this same growth of dependence has put stress on that very capability. Poor performance,
software backlogs and inflexible systems are, unfortunately, the norm.

Many solutions have come (and some have gone) to help with this problem. Some of these
solutions—the ones that hold the most hope—are difficult to integrate and move to from
existing technologies. Client/server and distributed-object computing in particular are seen
as hopeful solutions—and are hard to integrate.

Products, services, and techniques that help overcome these problems can be critical to the
success of the enterprise. OMG Business Objects and the Business-Application

Architecture are intended to enable such products, services and techniques by creating a
standard framework for business applications, using OMG’s CORBA.

It is not the intent of this paper to define or specify a business-application architecture or a
business-object protocol. Rather, it is the intent to identify the advantages of, need for,
and practicality of such standards in order to foster further work in this area.

1.1 Terms used

Terms used in the Business-Object domain correspond to terms used for similar (but
lower-level) concepts in other disciplines. The following table relates terms used in this
model to the other domains.

Business Objects Object-Oriented Software
Engineering

SmallTalk

Business Object Entity Model
Presentation Interface Presentation
Business-Process Object Controller Control

2. OMG Business Objects

Object-oriented systems have existed for about twenty years, but have only gained
widespread acceptance in the last five years. In particular, objects have come to dominate
user interfaces and system programming. Objects are visible to users as icons, boxes, and
windows on the screen that they manipulate directly. This style of user interface (originally
developed by Xerox PARC) has spawned a huge advance in the ease of use, esthetics, and
power of end-user software.

Objects have also been used extensively by advanced programmers in systems software
and applications. Objects are now part of the implementation of almost every major piece
of software. While not fully exploited, object-oriented programming is currently helping
make software more reliable and reusable.

Paradoxically, objects have not been widely used to represent the business itself. A
business can be “modeled” in terms of objects that make up and reflect it. Objects can
represent inventory and invoices, customers, and salespeople. Objects can also represent
events in a business, such as purchases, sales, and other types of transactions.

Modeling the world as objects and then implementing them in an object-oriented system is
the basis of object-oriented technology. It is time that the power and ease of
understanding inherent in objects be applied to the business itself. Anything that is related
to the finances, products, or customers of an enterprise can be a business object and work
as part of a cooperative business-object system.

Put another way, business objects represent things, processes or events that are
meaningful to the conduct of the business. Business objects can be distinguished from
programming objects such as arrays and I/O channels or from user-interface objects such
as buttons and windows. Business objects can also be distinguished from system objects
such as your word-processing program. Business objects make sense to business people.

2.1 Definition of a Business Object

A business object is a representation of a thing active in the business domain, including at least
its business name and definition, attributes, behavior, relationships, rules, policies and
constraints. A business object may represent, for example, a person, place, event, business
process, or concept. Typical examples of business objects are: employee, product, invoice and
payment.
The business-object abstraction, which models the real world, is represented by an object in the
information system. Each such object in the information system is a component of that
information system and must be supported by a technology infrastructure. [Burt 95]

2.2 Description of an OMG Business Object

The following Description of an OMG Business Object has been adopted by OMG
BOMSIG, and is included here for reference [Burt 95].

OMG Business Objects are representations of the nature and behavior of real-world things
or concepts in terms that are meaningful to the business. Customers, products, orders,
employees, trades, financial instruments, shipping containers, and vehicles are all examples
of real-world concepts or things that could be represented by Business Objects.
Business Objects add value over other representations by providing a way of managing
complexity, giving a higher-level perspective, and packaging the essential characteristics of
business concepts more completely. We can think of Business Objects as actors, role-
players, or surrogates for the real world things or concepts that they represent.
Business Objects can act as participants in business processes, because as actors they can
perform the required tasks or steps that make up business processes. These Business
Objects can then be used to design and implement systems in such a way that these
systems exhibit and continue to maintain a close resemblance to the business that they
support. This alignment is maintained because object technology allows the development
of objects in software that mirror their counterparts in the real world.
Business Objects allow an enterprise to communicate, model, design, implement,
distribute, evolve and market the software technology that will enable them to run their
business. The implications of Business Objects include:
• Communication: Business Objects provide common terms and ideas at a level of

detail which can be shared among business and technical people to articulate and
understand the business in business terms.

• Modeling: Business Objects have certain characteristics and behavior which enables
them to be used naturally in modeling business processes, and the relationships and
interactions between business concepts.

• Design: Business Objects represent real-world things and concepts which enable
design effort to be concentrated in manageable chunks.

• Implementation: Business Objects have late and flexible binding and well-defined
interfaces so that they can be implemented independently.

• Distribution: Business Objects are independent so that they can be distributed as self-
contained units to platforms with suitable installed infrastructure.

• Evolution: Business Objects can be used in a variety of roles and evolve with the
needs of the business. They provide a means for integrating, migrating and evolving
existing applications.

• Marketability: Business Objects have the potential to be commercially distributed and
combined with Business Objects from other sources to facilitate a market in Business
Objects.

More formally, a Business Object and its component parts are defined as:
• Business object: a representation of a thing active in the business domain, including at

least its business name and definition, attributes, behavior, relationships and
constraints. A business object may represent, for example, a person, place, or concept.
The representation may be in a natural language, a modeling language, or a
programming language.

• Business name: the term used by business experts to classify a business object.
• Business definition: a statement of the meaning and purpose assigned to a business

object by business experts.
• Attributes: facts about the business object relevant to fulfilling its business purpose.
• Behavior: the actions a business object is capable of performing to fulfill its purpose,

including: recognizing events in its environment, changing its attributes, and
interacting with other business objects.

• Relationship: an association between business objects that reflects the interaction of
their business purposes.

• Business Rules: constraints which govern the behavior, relationships, and attributes of
a business object.

2.3 Business Objects Are Not DBMS Tables

Business Objects may, at first, seem much like tables in a relational DBMS, since tables
also represent business information. In some simpler cases, there may be a direct
correspondence between a business object and a DBMS table. But in most cases, the
business objects will be implementing rules and processes beyond the capability of a
DBMS. They may be combining multiple tables, managing distribution or managing
information that is not even stored in a DBMS (like online stock price quotations).
Business objects represent multiple tables, processes and rules at a higher level than the
DBMS table.

2.4 Business Objects and Legacy Systems

Business objects can be built using any form of new development tool or they can be built
on top of existing software.

For example, let’s assume you have an application with 800 users running on a proprietary
DBMS and there is just no way for you to flip a switch and have these users run on a
newly designed system. However, you would like to add some new functions today and
then transition to a new, more-powerful DBMS over time—how?

A business-object “wrapper” is written in the language of the existing DBMS (business
objects do not have to be implemented in an object-oriented language) using a business-
object framework. The relationships, rules, and procedures for using the object are
implemented as part of the business object using the existing libraries and methods of the
legacy application. This new business object can then be used as part of the new business-
object architecture while still using the existing legacy application. Critical new functions
can be added on top of the business objects. This is using object techniques without

changing the legacy programming environment. Conceptually, the user interface of the old
program can be replaced by the Business-Object framework.

New presentations are designed with a business-object toolkit or another language to give
users a consistent view of their applications through the business objects. These new
presentations can be used at the same time as the original programs.

As time permits, the legacy application can be replaced—piece by piece, until it is gone.
Once the legacy application is gone, you are free to re-implement the business object with
more-current DBMS systems and tools without changing the other business objects or
applications (presentations) that depend on it.

Legacy applications may be wrapped at the DBMS level (as in the above example) or at
the application level. Business-object wrappers may communicate directly with the legacy
programs, which may or may not store information in a DBMS.

It is a unique feature of the business-object architecture that it works so well for building
new applications and providing a transition strategy for legacy applications and data.

Frameworks, adaptors, and re-engineering tools can be produced to assist with the
transformation of legacy systems in any language, on any DBMS or transaction processor.

3. The Business-Application Architecture

The Business-Application Architecture (BAA) represents an application architecture and a
protocol for “cooperative business objects” [Sims 95]. It is not the architecture of the
business or of a specific application, but an architecture for how to represent and
implement business concepts as business objects. The BAA is the “glue” that binds the
business model with the technology. The BAA, together with an appropriate
implementation, will provide a architecture in which business-object attributes,
relationships, business rules, and application rules can be implemented. Objects
implemented in this way will then be interoperable with other business objects that were
implemented in this way.

All information systems have an architecture. That architecture may be formalized and
structured, or it may be informal and implied. But for a system to operate, there must be
agreed-to conventions, structures, and protocols - this is the architecture. Most
“application-development systems” combine an application architecture with tools and
sometimes a language to help implement that architecture. The architecture becomes part
of the way you use the system or language.

The application architecture can be thought of as that layer between the high-level
business objects being implemented and the low-level languages, operating systems,
object-request brokers, and DBMS systems. As part of the architecture, a “protocol”
exists for the components of that architecture to interact The protocol includes an object
model, all interfaces, rules, constraints and ordering considerations.

The BAA is not a standard business model; it does not attempt to specify the standard or
common components, object structures, or processes in a business. It is a standard way to
represent any business model as a structure of executable distributed objects.

3.1 How Does the BAA Fit with Tools and Languages?

The business-application architecture does not attempt to specify the correct or best
method for implementing business objects. Any combination of computer languages,
4GLs, design tools, frameworks, rule-based systems, and expert systems may be employed
to implement a business object. Frameworks and other forms of tools and components are
anticipated as products that assist developers or users in defining and implementing
business objects that enable the business-object protocol. The BAA and underlying
technologies provide a structural layer that allows differing implementation vehicles to
work together in the same businesses.

It is expected that higher-level interfaces will be provided so as to hide the highly technical
Interface-Description Language (IDL) interfaces from application developers. These
higher-level tools and frameworks will provide standard BAA-to-IDL interfaces as a
“framework” that application developers can use more easily. The high-level frameworks
and tools will provide interfaces appropriate for directly defining business objects,
attributes, relations, and business rules. In that these high-level interfaces may interoperate
via the BAA protocol, we do not expect these interfaces to require standards of their own.

Note: It is possible for developers to create business objects that directly implement the
BAA protocol; however, this protocol must expose some of the complexities inherent in a
distributed-object system and for this purpose, implementation frameworks and
intermediate components are useful in simplifying the job of the application developer.
However, developers are free to use (or extend) the BAA protocol directly for special
needs.

For support of legacy systems, business-object frameworks may be built for COBOL,
RPG-II, IMS, and CICS. While the “source code” for these systems would appear
completely different, the resultant application architecture would be the same and the
objects would be interoperable.

3.2 How Does the BAA Fit with Other Application Architectures?

Many application architectures exist for both business and non-business applications. In
that such architectures must be able to co-exist with each other and the BAA, the BAA
must be sufficiently general to facilitate the interaction of BAA applications with
applications of other architectures. The “wrapping” technique previously discussed in
connection with legacy applications provides the capability to implement the BAA
protocol in conjunction with other architectures—it is not an exclusive option. Thus the
BAA is intended to provide the interaction protocol for application components in a
variety of architectures.
Application architectures outside the business domain generally become part of the
implementation of business concepts represented as business objects. For example, while a
software-development company may monitor a project with a configuration-management
system that uses its own application architecture (such as PTCE), the company’s business
system may refer to a single entity, which is the development project for that application.
The implementation of the “project” business object may use the configuration-
management system to provide business information (such as project status) to the
business system.

It is unclear at this time whether the BAA can be sufficiently general to represent all
business applications. It is our hope that other architectures can be built as extensions to
the BAA rather than alternatives to the BAA. Such a determination can only be made
after further work is done in this area.

4. Advantages of OMG Business Objects and the BAA

4.1 Flexibility

Maintaining a simple, standard interface to objects relevant to your business makes the
information facility much more flexible. Changes in business policies or structure can be
reflected directly by the business objects, and applications based on these will frequently
adapt automatically to the changes. New business objects and business structures can be
developed and deployed while still maintaining the old interfaces for a cross-over period.

Since the implementations of business objects directly reflect the structure of your
business, business objects and applications are easier to produce and maintain, providing a
more-responsive information-processing facility.

4.2 A single place to put business rules

The rules, policies and procedures of an enterprise can become quite complex and
interrelated. By having a single, known place to put each rule (and express it only once!)
the management and evolution of your rules, procedures and policies become much less
complex.

4.3 High-level

The business objects operate at a “high” level, one that is understood by business people.
Entire organizations—and in particular top management, can participate in the design of
its information model and business rules without having to be burdened by implementation
details. Business Objects use business names and terms.

4.4 Works with legacy systems

Legacy systems and data can be “wrapped” as business objects to become part of the new
generation of applications without discarding the value of the legacy applications.

4.5 Insulation from insufficient or transient standards

Standards which were intended to prevent the business from becoming dependent on a
particular vendor tend to be frustrated in real-world situations. Information-systems
departments seem inevitably to depend on proprietary extensions and features sooner or
later that again cause “lock in”. With business objects, the enterprise’s own information
model becomes the standard, insulated from the DBMS or “tool du jour”. Advances in
technology and new standards can be more easily integrated with working systems.

4.6 Open architecture

The business-object architecture is open and extensible. Interfaces and capabilities can be
added as required for the business’s need. Even the business architecture itself can be
implemented on top of any distributed-object standard. As standards come into place,
business objects become interoperable and tools can be provided to create and maintain
them.

Any type of tool can be used to implement business objects or exploit their existence.
Advanced Business Process Re-engineering tools, Workflow systems, CASE tools, 4GLs
or 3GLs can all be employed to create or use business objects. The high-level nature of
business objects makes them ideal for advanced decision-support systems and report
writers.

4.7 Scaleable

Since business objects can employ advanced distribution mechanisms “behind the scenes”
and the same or a related business object can be distributed across multiple systems, the
architecture is infinitely scaleable. The applications are insulated from changes made to
scale the system.

4.8 Reusable components

Business objects represent well-defined reusable components for application development.
Reusable components leverage design and development efforts, increasing responsiveness
and reducing costs. Business objects may be purchased from third-party vendors and
integrated into an existing system.

Since business objects directly represent the business model, reuse becomes natural. The
business model and objects (which have a natural order) become the library of reusable
components.

4.9 Opens system to “power users”

Since business objects are visible to the “desktop,” any program or user can access and
safely manipulate the objects of the business. Power users and end users get
unprecedented accessibility to enterprise resources.

Business objects are safe to manipulate because data integrity and business rules are
enforced by the business objects.

4.10 Ideal for business-process re-engineering

Business-process re-engineering (BPR) is heavily dependent on a strong and flexible
information system. Business objects are an ideal way to implement an information system
that supports BPR. The type of analysis done to “re-engineer” a company can produce the
of business model that business objects can implement.

Ivar Jacobson, in his excellent book Object Advantage [Jacobson 94], shows how BPR
and object-oriented analysis can be combined and are complementary.

4.11 Ease of use

Providing a pre-built application framework places the user in a better position to
concentrate on the application problems. Users who are forced to build an application
framework “from the ground up” can face a huge effort in design and implementation that
has nothing to do with their business problems. A well-thought-out, proven and standard
framework can save massive amounts of work. Combine this with the possibility of
purchasing pre-built objects and pre-built tools and the user’s work is really leveraged!

Business objects use business terms in ways that business people understand. Keeping the
terminology in line with the business makes the entire system more understandable.

4.12 Business objects are “happening”

Business objects are a hot topic. The press is talking about them, standards bodies, like the
Object Management Group (OMG), are talking about them. IS professionals are asking
for the functionality. Vendors are implementing them. Users who currently are trying to
use “two-level” client/server systems know they need them.

4.13 Standards and the OMG

While products based around this architecture are attractive, standards will make it an
industry. By standardizing on the Business-Object Architecture, objects created in diverse
systems can interoperate and companies can provide specialized tools to create and
maintain the business objects.

The lower “technology” layer is already available and standard as CORBA 2.0. The next
layer of standardization can provide the higher-level business-object protocol.

We expect the infrastructure and interface to become standardized by the OMG sometime
in 1996. Once this happens, the now-uncoordinated efforts being put into business objects
can become cooperative technologies supporting a common application architecture.

Post-OOPSLA update: An RFP for business objects was issued by the OMG on January
11th, 1996 [Casanave 96].

5. How Business Objects Fit into a Business

Non-object
Programs and
Components

Object
Technology
Components

DBMS

Implementation

Presentation
and

Desktop

Business
ObjectsBusiness

Model

Diagram BAA-1

5.1 The business model

The basis for any business-object system is the “model” of the actual business. This model
is built using abstract business objects and processes and/or more-specialized versions of
these abstract objects.

This model should include every person, place, thing, event, or transaction that needs to
be captured in the information system.

The business processes are likewise identified and modeled as business-process objects.

Once complete, this business model becomes a valuable reference to how your business is
organized and operates.

5.2 Business objects and implementation components

Each object in the business model is used to create an executable representation of that
object in your computer system. This executable object will contain and encapsulate the
information and rules associated with that object and its relationships to other objects.

Some business objects may be implemented on top of existing applications as “wrappers”,
exposing the legacy application as business objects. Other objects may be implemented
using Workflow tools, computer languages or 4GLs. Provided all of the tools and
wrappers can “speak” the BAA protocol, consistency of implementation environment is
not required.

When used with a traditional DBMS, the executable objects sit between the DBMS and
the user interface providing an object-oriented, multi-tier client/server system.

The direct representation of the business model as executable and user-accessible objects
is the essence of the business-object concept!

5.3 Presentation and system interfaces

Given the executable business objects, user interfaces are generated to allow users and
other applications to view and manipulate the business objects. The business-object user
interface becomes the new “look and feel” for your applications. Desktop applications may
also interface with the business objects through interfaces such as OpenDoc and OLE.

5.4 The outdated concept of “application”

With a system composed of a set of cooperative business objects, the outmoded concept
of monolithic applications becomes irrelevant. Instead, your information system is
composed of semi-autonomous but cooperative business objects which can be more easily
adapted and changed. This type of component assembly and reuse has been recognized as
a better way to build information systems.

An application, in terms of business objects, becomes a set of cooperative business objects
combined to facilitate business processes.

6. The Requirement for OMG Standards

6.1 Options for an application architecture and framework

Given that an organization wishes to implement a business application, there must be an
application architecture. That architecture may be custom, proprietary, or standard. Each
approach has its advantages and disadvantages.

6.1.1 Custom
A custom architecture provides maximum internal flexibility to the enterprise. The
applications can be designed and tuned to the organization’s needs. Since the organization
has developed much of its own infrastructure, it is not dependent on as many external
suppliers (unless such dependencies are built into the custom framework).

Creating a custom architecture is not a small job. Experience has shown that a highly
capable and specialized development team requires one to two years to field a stable
infrastructure for applications development in a distributed environment.

The application infrastructure, like all software, will also require costly maintenance and
future development. Of course, the application created in a custom environment will not
interoperate with external software—considerable effort must be expended to integrate
other software and data.

6.1.2 Proprietary
A proprietary application framework may be purchased from a vendor, frequently with
some standard business applications. This solves the problems of producing a custom

framework, but it does not solve the problems inherent in integrating the system with
software that uses another framework.

Many organizations are also concerned about being locked in to a proprietary-framework
vendor, since the organization may become very dependent on the provider. However,
with a good provider relationship, a proprietary framework may be very productive.

6.1.3 Standard
A standard framework solves the problems of creating a custom framework and becoming
locked in to a single vendor. The organization may deal with multiple vendors to supply
and support the standard framework.

The standard framework will have a much-larger support base and as such will probably
be worked-out and debugged to a greater degree.

The most-important factor in a standard framework is commercial support. Given a
standard framework, it is practical to purchase pre-built business objects in an open
market. Pre-built objects can be used as-is or enhanced using standard object-oriented
techniques, vastly leveraging development. On the tool side, the organization can purchase
design and implementation tools, data-analysis tools, languages, libraries and utilities to
help use and build applications in a standard framework. Standard desktop applications
can interface with the architecture components.

A standard framework also leverages training. A development organization will be better
able to find employees and consultants who already understand how the business system
operates.

A standard framework can also be expected to have a longer lifetime. While standards
take longer to produce, they also last longer. Business applications have an average
lifetime of 10-15 years, while some proprietary architectures have a lifetime of one-to-two
years. Standards have a lifetime more in keeping with business needs.

The only downside to a standard framework may be flexibility. The framework may not do
just what is required in very special conditions. But, the object-oriented paradigm helps
here as well, since the standard framework can be extended, as can all object systems.

In short, a standard framework can foster an industry of business objects.

6.2 Goals of standardization

The reasons to standardize components of the BAA are directly reflected in the purpose of
the OMG...

(a) to promote a single object-oriented applications-integration environment based on
appropriate industry standards;

(b) to promote a framework for compatible and independent development of
applications;

(c) to enable coordination among applications across heterogeneous networked
systems in a multinational, multilingual environment;

(d) to adopt a core of commercially available implementations of this framework and
to promote international market acceptance and use;

(e) to actively influence the future direction and development of these core products
and technologies; and

(f) to foster the development of tools and applications that conform to and extend this
framework and to provide a mechanism for certifying compliance with the core
technologies.

(Article I of the OMG by-laws [OMG 95])

Such a purpose for OMG and the BAA will have a range of advantages...

6.2.1 Synergy
To synergize the work being done in creating business applications and distributed object
components into a cooperative industry effort.

6.2.2 Interoperability
To make independently developed business objects interoperable with a minimum of
effort.

6.2.3 Federation of systems
To allow diverse business systems to be integrated.

6.2.4 Ease of use
To make the information understandable in business terms and easily meet business needs.

6.2.5 Open market
To foster an open market in business-object-related components, both in pre-built business
objects and in tools for using and building business objects.

6.3 What needs to be standard?

With all the advantages of a standard, there is a dark side also. Restrictive standards can
stifle innovation, and poor standards can do more harm than good. To minimize the
inherent problems of standardization, standards should be minimal. That is, they should
provide a sufficient level of standardization to meet the goals but no more. Simple,
minimal standards are also easier to adopt to future innovation.

Another question of a standard is its scope. We are targeting business applications because
of the extreme importance of business data processing and because of the high degree of
commonality among business applications. Business applications represent billions of
dollars of expenditure worldwide and directly impact the productivity of society—they
deserve special attention. Trying to design a framework for all applications may not
sufficiently benefit business applications; it may not even be possible. Applications outside
the business domain may still use the BAA where appropriate, but it is not the design

intent of the BAA. The term “business application” is intended in its more-general sense.
The data processing of governments and organizations fall within the domain of the BAA.

6.4 Existing OMG standards

The existing OMG CORBA standards are required to implement a distributed-object
business system. They provide the basic mechanisms for creating and using objects in a
distributed network.

The existing and proposed OMG standards provide the necessary interfaces for
transactions, User interface, events, object lifecycle and object query are all required for a
business system. The proposed application architecture must build on and work with the
existing standards. For example, the IDL interface to the user interface should conform or
work with the user-interface component adopted by OMG common facilities.

The application architecture should build on this existing foundation.

Are the existing standards sufficient? If the existing standards were given to two
development teams with the charter of producing the same application, it is unlikely that
the above goals would be achieved. Both teams would have to come up with their own
answers to fundamental questions like:

• What is the appropriate structure of an application built with these tools?
• How are changes and dependencies propagated?
• Should the user-interface and business rules be together?
• Should the data and business rules be together?
• How does the user interface interact with the data in the business object?
• Where are the business rules put?
• How does an object locate another cooperative object?
• What are the common events that drive the system?
• What happens when a business rule is broken?
• How are errors handled?
• What happens when rules or data change?
• Will the structure scale-up to a running system?

Answering these questions and building the infrastructure to support them is the process
of designing the application architecture and framework. Given that no two teams are
going to come up with the same rules, the requirement for interoperability will not be
achieved, and considerable effort will have been duplicated.

6.5 Required new standards

Two elements are essential to an application architecture and protocol. The architecture
represents the components that are used to “model” the business problem and build the
system, while the protocol is the set of rules that govern how these components behave
and communicate with each other.

For example, in the reference model (Diagram BAA-2), we have presentations and
business objects. If users change data in the presentation, how is that change
communicated to the business object? If that change violates a business rule, how is that

violation communicated to the presentation? Which object is responsible for side effects
of that change and how and when are the side effects made visible to the presentation?

Business application are very “state-” (or data-) oriented. That is, business systems are
driven by actions changing data and properly propagating the effects of that change. The
protocol must provide very clear rules for dealing with that state and propagated effects.

6.5.1 Basic architectural framework
The basic framework outlined in the reference model (Diagram BAA-2) has three
components: business objects, business-process objects, and presentations. These are the
building blocks of the applications. The same building blocks are used to model the
business and to build the application. Each component of the BAA application becomes a
subclass of one of these components.

As part of the architectural framework, each of the following must be addressed:

• What the appropriate structure of an application built with these tools is.
• Whether the user-interface and business rules should be together.
• Whether the data and business rules should be together.
• Where the business rules are put.
• What happens when a business rule is broken.
• What happens when rules or data change.
• How the structure will scale up to a running system.

6.5.2 Inter-object protocol
The protocol is the standard IDL interfaces between presentations, business objects, and
business-process objects. Anything done to these objects is done through these standard
interfaces. The primary purpose of the interface to business objects will be to make and
respond to changes in the objects’ states. As part of the protocol, business objects should
present their metadata. Metadata is information about the business object (as distinguished
from the data the object is dealing with). By having the object present its own metadata,
applications can change their behavior based on changes in the metadata, making the
entire system more friendly, flexible and dynamic.

As part of the protocol, each of the following issues must be dealt with:

• How are changes and dependencies propagated?
• How does the user interface interact with the business object?
• How does an object locate another cooperative object?
• What are the common events that drive the system?
• How are errors handled?

6.6 What does not need to be standard

Anything that has to do with the expression or implementation of business objects or
presentations should not be standard. The best and most-proper way to express business
objects and business rules is still growing and changing; we do not need to lock that down
in a standard. As long as the objects can implement the desired protocol, our goals are
achieved. The following are some of the elements that do not require standards.

• High-level interfaces
• Computer language
• Operating system
• Source code
• Design tools
• Design methods
• Business-rule representations
• Implementation frameworks
• Presentation style
• Custom interfaces

6.7 Domain (application) object interfaces

Once the application architecture has a sufficient level of definition, the question of
commonality of specific objects arises. Can we identify common objects like customers,
accounts, products and orders and derive common names, attributes and relationships for
those objects? Standards for common business objects are not required for the BAA to
work, but they would enhance the ability for the objects to interoperate. Standards for
business-domain objects is a separate issue from the BAA and is not covered in this paper.

6.8 The RFP

The OMG BOMSIG drafted an RFP (Request For Proposal) [Casanave 96] for common
business objects and a Business Object Facility. This RFP was issued by the OMG January
11th, 1996. The RFP items are described as follows:

6.8.1 Common Business Objects
Objects representing those business semantics that can be shown to be common across
most businesses.

6.8.2 Business-Object Facility
The infrastructure (application architecture, services, etc...) required to support business
objects operating as cooperative application components in a distributed object
environment.

The following diagram shows how these facilities fit in the current OMG architecture.

Enterprise Specific Business Objects

CORBA, CORBAservices, CORBAfacilities

Financial
Business
Objects

Manufacturing
Business
Objects

Other
Business
Objects

Common Business Objects

Business Object Facility

These facilities are seen as the “missing middle layer” between the CORBA facilities as
the low-level infrastructure and the needs of standard and custom vertical applications as
the high-level.

7. Business Application Architecture Reference Model

The reference model is a general model for business objects intended to encompass
multiple interpretations and implementations of this concept. Diagram BAA-2 shows the
abstract components of a business-object system and their interrelationships. Specific
business-object systems may implement a superset or a subset of this model.

Business Application Architecture

Business
Process
Objects

Non-object
Programs and
Components

Object Technology
Components

DBMS

Implementation

Presentation
and

Desktop

Users

Business
Entity

Objects

Diagram BAA-2
In this diagram, we can see that the tools used to build “traditional” programs, DBMS
systems, technology components, and non-object programs, are encapsulated (shown by
the inner circle). Only Business Objects will interface with this layer. Business Objects are
encapsulated and made accessible to users by visual presentations and desktop programs.
The Business Objects and their presentations comprise the Business Application
Architecture.

There are several object-oriented meta-models to draw on for this purpose. A primary
candidate is the model contained in the OORAM [Reenskaug 96] methodology. OORAM
has the following features:

• the enterprise is modeled in terms of roles and collaborations between roles

• role collaborations and the information model are integrated

• models (frameworks) can be synthesized together

7.1 Components

7.1.1 Applications
Applications in this context are programs that are composed of a set of cooperative
business objects. A program may implement one or many presentations and processes that
work with business objects.

Any number of applications may be expected to share and reuse a common class of
business objects. It is implementation-specific as to whether multiple applications share an
instance of a business object.

Note: Not all applications are business-application-architecture applications. Other types
of applications may exist for other purposes and architectures.

7.1.2 Business objects
Business objects encapsulate the storage, metadata, concurrency, and business rules
associated with a thing, process, or event in a business. Multiple independent but related
business objects may cooperate to service one application. Implementations may require
different “flavors” of business objects for differing roles, such as: client-local objects and
server objects. Business objects are responsible for all aspects of implementation including
enforcement of business rules, application rules, data validity, concurrency, and storage.
Business Objects are a representation of a thing active in the business domain including,
but not limited to, its name and definition, attributes, behavior, relationships, and
constraints.

7.1.2.1 Business-entity objects
Entity objects represent the actual things and concepts that make up the business. These
are the nouns of the model: the people, places, things, and business events (such as a sale)
that model the static state of the enterprise. Entity objects are an object-oriented extension
to the concepts found in “ER” modeling and semantic modeling.

7.1.2.2 Business-process objects
Processes represent the flow of work and information throughout the business. These
processes act on the business entities to cause the business to function. Business processes
may be long-lived (such as an order life cycle) or may be short-lived (such as an end-of-
year report). Long-life-cycle business processes are typically part of Business Process Re-
Engineering (BPR) analysis.

Business-process objects may be implemented with Workflow systems, business-process
managers, object-oriented languages, procedural languages, or interactive process-
definition systems. The only requirement on the process implementation/definition
environment is that the resulting business process supports the standard BAA interfaces or
can be “wrapped” to provide such interfaces.

The executable business-process objects which represent the processes in the information
system should not be confused with a Workflow definition that may take a part in
implementing a business-process object. A Workflow definition, like any other business
rule, is part of defining and implementing the object, not using it.

7.1.3 Presentations
Business objects have a companion—the Business Object Presentation, or “Presentation”
for short. Each business object can have multiple presentations for multiple purposes. The
presentation is the user’s view of the business object for a given purpose. The
presentations communicate with the business object in two ways: 1) To transfer
information between the presentation and the business object on behalf of the user. 2) To
learn how to display and manipulate the information (called “metadata” or, data about the
data).

Having the presentations learn about the data from the business object makes them very
simple and flexible. If anything about the business object is changed, that change is
immediately reflected in the presentations.

Presentations are one type of application that can make use of business objects. Custom
applications and automated processes (like Agents) can be part of a business-object
system.

Presentations are always run on client machines but, thanks to the distributed-application
architecture, the business objects and DBMS systems can run on the client machines, the
server, or both. In large systems, the implementation of a single business object can be
split into multiple pieces to better optimize performance across large networks. Since the
mechanisms of implementing the business object and storing the data are encapsulated
“behind the scenes”, advanced DBMS distribution, object-oriented DBMSes, concurrency,
and replication systems can be added to change the scale of operation without changing
the interface to, or use of, the business object. Business objects can “scale” to the capacity
of the underlying systems.

7.1.4 Implementation
The implementation components are encapsulated by the business objects. They are not
accessed directly by users, processes, or presentations. The business objects use and
manipulate DBMS systems, technology components, and non-object programs to
implement their functionality.

7.1.4.1 DBMS
The DBMS (or similar repository) is expected to store the representations of business
objects and aid in their retrieval and concurrency. Many but not all business objects will
use a DBMS to store their states.

7.1.4.2 Non-object programs and components
Business objects can encapsulate non-object or legacy programs so as to provide these
older applications with the business-object interface. Existing non-object programs can
also be modified to replace their user interface with a business-object interface.

7.1.4.3 Object technology components
Object technology components are the other pieces of technology required to implement
the business objects. In the OMG model, these include CORBA, CORBAservices and
CORBAfacilities. They also include other applications used to support the business
objects.

7.2 Requirements

7.2.1 Encapsulation
The architecture of a business-object system is one in which the data, data storage,
business rules and operations relating to each business entity are “encapsulated”
(contained in and hidden by) a business object. These business objects have a simple,

standard interface that allows them to communicate with other business objects and with
business-object presentations (presentations are what users see on terminals and reports).
This represents the standard notion of object-oriented encapsulation applied to the
business domain.

7.2.2 Responsibilities
Each business object is responsible for managing its own storage (usually in a DBMS),
security, maintaining its relationship with other objects, and implementing and enforcing
the policies, procedures and rules of the business as they relate to that business object.
Business objects are information-centric in that they expose and manipulate business
information. Business objects are encouraged, but not required, to utilize OMG object
services and common facilities for implementation.

7.2.3 Distribution
Business Objects are implemented on top of a standard distributed-object broker such as
CORBA (OMG), DSOM (IBM) or COM-OLE2 (Microsoft). These distributed-object
systems have only recently become available as industrial-strength products and this
technology is key to the business application architecture. The object broker allows any
program (even your word processor or spreadsheet) to access and manipulate the business
objects. Since rules are maintained by the business objects, complete control is exercised
over the integrity and validity of the enterprise data. The object broker also allows any
object to exist on any computer system and still integrate with the total information-
processing infrastructure.

7.2.4 Ease of use
Business objects are intended for use by the developers and users of business applications.
As such the design and implementation of business objects must support the requirements
of these users. These requirements extend across the entire lifecycle of development from
design to maintenance. The interfaces and services provided must make sense to these
persons and allow them to define business applications without undue knowledge of, or
restriction by, the technology.

7.2.5 Loosely coupled
Business objects exist within the dynamic environment of business. Business changes,
merges, separates, and re-engineers. Business objects must cooperate within an
environment that supports such dynamic change. As such, these objects must cooperate in
ways that preserve the semantics but allow each object to change and grow independently.

7.3 Specialization of business objects

User/Job Specific Business Objects

Company Specific Business Objects

Industry Specific Business Objects

Common Business Objects

Business Application Architecture

Presentation

Business
Proccess

Business
Object

Specialization

Diagram BAA-3
The generic Business Objects, Business Processes, and Presentations defined in the
Business Application Architecture are specialized through common, industry, company,
and user business objects.

For example, A Business Object might be specialized to create an “order” object in a
general business suite. This order object may then be further specialized in a consulting
company to be an “order for consulting services” object. A particular consulting company
may add rules and attributes to that consulting-order object to enforce company policy.
Finally, a particular department might further specialize the company’s consulting-order
object for a particular type of service.

The facility for specialization is inherent in the use of objects to represent the business in
the information system. The degree of specialization required is driven by the business
requirements of the users and the degree to which specialization will enhance business
practices.

8. References

[Burt 95] Carol Burt [ed.]: OMG BOMSIG survey with published definition of a business object. OMG
document 95-02-04. Www.omg.org

[Casanave 96] Cory Casanave [ed.]: OMG Common Business Objects and Business Object Facility RFP.
OMG Document CF/96-01-04. Www.omg.org

[Jacobson 94] Ivar Jacobson, Maria Erricsson, Agneta Jacobson: The Object Advantage, Business process
reengineering with object technology. Addison Wesley 1994. ISBN 0-201-42289-1

[OMG 95] Object Management Group: Bylaws (not published).

[Reenskaug 96] Trygve Reenskaug with Per Wold and Odd Arild Lehne: Working with Objects, the
OORAM Software Engineering Method. Manning 1996. ISBN 1-884777-10-4

[Sims 94] Oliver Sims: Business Objects, Delivering Cooperative Objects for Client-Server. McGraw-
Hill. ISBN 0-07-707957-4

