Business Object Facility

Prepared by: Business Object Architectureteam

Contact:

Tom Digre

email: digre@ti.com

phone: 214 575-5272

fax: 214 575-2866

mail address. Texas Instruments Incorporated
6620 Chase Oaks Blvd, MS 8417
Plano, Texas 75023

Business Object Facility April 23, 1996

Table of Contents

1. FOREWORD 5
2. SPECIFICATION DESCRIPTION 6
2.1 Rationale 6
2.1.1 Goals and Objectives 6
2.1.2 Scope 10
2.1.3 Interoperability 13
2.1.4 Separation of technology issues 13
2.1.5 Extensibility of business objects 14
2.1.6 Reusability 16
2.1.7 Scalability 16
2.1.8 Ease of development and deployment 16
2.1.9 Application integration 18
2.1.10 Security 21
2.1.11 How business objects implement the business model 21
2.1.12 Legacy applications 21
2.1.13 Flexibility and longevity 24
2.1.14 Generality and desktop integration 25
2.1.15 Proof of commonality 25
2.1.16 Specification of business objects and metadata 25
2.1.17 Multilingual use 25
2.2 Conceptual Model 26
2.2.1 Business Semantic Model 26
2.2.2 Business Transaction Model 29
2.2.3 Business Object Dynamic Relationship Model 31
2.2.4 Business Object Dynamic Event Model 32
2.2.5 Business Object Dynamic Property Model 34
2.2.6 Business Object Externalization Model 34
2.2.7 Business Object System Management M odel 35
2.2.8 Life CycleModel 36
2.2.9 Contracted Roles 37
2.2.10 Other Considerations 38
2.3 Interface Description: OMG IDL 40
2.4 Interface Description: Behavior 44
2.4.1 Business module 44
2.4.2 Relationships 59
2.5 Glossary 59
3. RESOLUTION OF TECHNICAL AND NON-TECHNICAL ISSUES 65
3.1 General Technical Requirements 65
3.2 Technical Criteria 69
3.2.1 Change and Event Notification 69

Business Object Facility April 23, 1996 2

3.2.2 Active Views 69

3.2.3 Transparent Persistence 70
3.2.4 Search mechanism 70
3.2.5 Backout 70
3.2.6 Concurrency and Serialization 71
3.2.7 Nested Transactions 71
3.2.8 Referential Integrity and Garbage Collection 71
3.2.9 Encapsulated attributes and relationships 71
3.2.10 Constraints, rules and policies 72
3.2.11 Relationship Management 72
3.2.12 External name management 73
3.2.13 Exception/Fault Resolution 73
3.2.14 Configuration Management 74
3.2.15 Composite Object Bounds 74
3.2.16 External Resource Representation 75
3.2.17 User Attributes and Preferences 75
3.2.18 Textual Representation 75
3.2.19 Executable Object Expressions 76
3.2.20 Loose binding 76
3.2.21 Instance Specialization 76
3.2.22 Reflection 77
3.2.23 External interfaces 77

3.3 Relationship with other Common Facilities, OM G Object Services, CORBA and OMG Object

M odel 77
3.3.1 CORBA 78
3.3.2 CORBAServices 78
3.3.3 CORBAF&cilities 78

3.4 End User Requirements 78
3.4.1 LifeCycle 79
3.4.2 Installation/De-installation 79
3.4.3 Upgrade 79
3.4.4 Performance Management 79
3.4.5 Testing and Problem Determination / Resolution 79

4. SPECIFICATION DEPENDENCIES 80

4.1 Meta Object Facility 80

4.2 Object Analysis & Design Facility 81

4.3 System Management Facility 81

4.4 Notification and M essaging 81

4.5 Change M anagement 81

4.6 Replication 81

4.7 Logging 81

Business Object Facility April 23, 1996 3

5. RELATIONSHIP TO CORBA

6. RELATIONSHIP TO OMG OBJECT MODEL

7. STANDARDS CONFORMANCE

8. OTHER INFORMATION

8.1 References

Business Object Facility

April 23, 1996

81

81

81

81

81

1. Foreword

This document was prepared by the Business Object Architecture (BOA) team as part of
the T1 SC Enterprise Framework strategy. BOA is the information technology
architecture used to implement the T1 SC Enterprise Framework Business Object Model.
A key element of BOA isthe Business Object Facility, which is the focus of this
document.

OMG hasissued an RFP for “Common Business Objects and Business Object Facility”.
BOA has adopted this RFP as a statement of requirement for akey element of the
architecture. The remainder of this document has been prepared and formatted as a
response to the RFP. The BOA team, which includes members from many internal Tl
development organizations, is not authorized to develop a commercia product and
consequently can not directly respond to the RFP. However, this document will
facilitate:

Identifying, structuring, and aligning our specifications consistent with the OMG

roadmap.

Exerting influence on vendors responding to the RFP, particularly with respect to

ensuring that T1 requirements are being satisfied.

Evaluating responses to the RFP. Our experience in transforming requirements to

OMG specifications, and representing those specificationsin the format required for

the RFP response, will enable usto quickly evaluate and articul ate relative merits and

shortcomings of RFP responses.

Commercial products based on the OM G-adopted Business Object Facilty specification
will not be available until at least 1998. Furthermore, it may not be feasible for our
internal development organizations to build functionality completely conformant with
this specification. Consequently, this specification will be considered “abstract”, awell
defined technical objective which can not be completely satisfied with current product
offerings. To address short term requirements, “concrete” specifications will be written,
guided by this abstract specification, but based on readily available purchased or in-house
technology.

Business Object Facility April 23, 1996 5

2. SPECIFICATION DESCRIPTION

2.1 Rationale

This specification defines a Business Object Facility which satisfies requirements
enumerated in OMG’ s “Common Business Objects and Business Object Facility” RFP.
“Figure 2-1 Business Application Architecture” illustrates how that RFP depicted the
architectural relationship between the Business Object Facility, other OMG infrastructure
components, and Business Objects.

The approach taken by this specification is to leverage existing (and anticipated) OMG
specifications through selective composition of defined CORBA services, with minimal
specialization.

Enterprise Specific Business Objects

Financial | Manufacturing | Other
Business | Business Business
Objects | Objects Objects

Common Business Objects

Business Object Facility

CORBA, CORBAservices, CORBAfacilities

Figure 2-1 Business Application Architecture

2.1.1 Goalsand Objectives

The primary objectives of this specification are to facilitate:

Business Object Facility April 23, 1996 6

Simplicity in the development, deployment, change and use of business objects for
application users and developers.

Interoperability of independently developed business objects.

Implementation of business object configurations as “plug and play business
components’ of the information system.

A direct correspondence between the business object model, in understandable
business terms, and the business components of the information system.

Isolation of infrastructure and business objects from tool or presentation technologies.
Isolation of technology from business logic.

Transactional integrity across distributed business objects.

Direct coupling between a Business Object and its defining meta business object.
Consistency of business object specification across the development lifecycle.
Flexible and dynamic business object models.

Enforced business semantics.

It is anticipated that implementations derived from this specification will have a
substantial impact on ability of business systemsto adapt to rapidly changing business
requirements and on the cost and effectiveness of information systems that are
increasingly critical to business priorities.

The Business Object Facility isjust one element of an overall component-based
architecture, and just one stage in the transition from legacy to plug and play business
components, as shown in “Figure 2-2 Component Based Architecture Reference Model”.
This reference model is with respect to an architecture built upon layers of technology
successively enabling capability on the path towards plug and play business components.
The architectural structure is motivated by OM G-defined architectures[OM G 95.01.02,
OMG 93.12.29, OMG 95.01.12].

The technology layers of the architecture include:

- Platfor ms, operating systems, database management systems, networks, and other
fundamental software infrastructure components. Applications built directly on this
layer are typically characterized as monolithic and centric.

ORB(Object Request Broker). Using any of avariety of middleware communications
mechanisms, this layer of technology typically enables construction of client/server
applications founded on syntactic interoperability. CORBA is an example
implementation [OM G 93.12.29].

Object Services. A set of fundamental services necessary to implement distributed
applications. The services encompass distributed concepts of object relationships,
concurrency, persistence, transactions, etc. [OM G 95.01.12]

Facilities. A set of tools, common business objects, conventions, and component
interoperability services necessary to support integrity of business semantics from
time of business requirement specification to implementation. More specifically, this
architectural layer includes the Business Object Facility, Meta Object Facility, and
Anaysis & Design Facility.

Business Object Facility April 23, 1996 7

Vertical Domains. For each business domain, a set of plug and play Business
Application Components compliant with industry-standard specifications. Industry
standards are expected to evolve from activities of OMG Special Interest Groups and
industrial consortia such as SEMATECH and OAG.

End user empowerment

Enterprise
Integration Model

Mfg ||| Finl| .. Vertical
Domains

Common Facilities

Common Object Services

CORBA

Platforms; OS; DBMS; Networks

Figure 2-2 Component Based Ar chitectur e Reference M odel

Each major element of the Component Based Architecture Reference Model represents a
level of achievement towards the objective of acomponent based architecture. The
baseline level of comparison isthat of “monolithic applications’, which are characterized
by applications tightly coupled with a platform (including DBMS, Operating System,
Transaction Processing Monitor), driven by an exposed data model (as opposed to
encapsulated information), having limited enforcement of consistency with business
requirements, and having limited interoperability with other applications. With reference
to this baseline, the levels of achievement, or objectives, are (also see “Figure 2-3
Architectural Objectives’):

Client/server applications. (ORB). The following features characterize

components attaining this technology objective:

- Implementation and location transparency. Clients are unaware of the location
of server software components or their implementation details. Component
implementation and location can change dynamically, without any
modification to the client.

Universally accessible on federated enterprise ORBs.
Physical black-box encapsulation of related services.

Business Object Facility April 23, 1996 8

Programming language independent. All component public interfaces are

defined in IDL (Interface Definition Language).

Extensible, reusable specifications. Interface specifications can be inherited.
Distributed Applications. (Object Services). The following features characterize
components attaining this technology objective (in addition to characteristics of
client/server applications):

Information Management technology transparency. Business application

components are unaware of the location of data storage components or their

implementation details. DBM S implementation and location can change
dynamically (plug and play), without any modification to business application
components.

Heterogenous Information management services are universally and

transparently accessible.

Applications are fully peer to peer; they can be distributed across multiple

heterogeneous platforms and underlying information management systems.

Application transactions (units of work) can be distributed and nested across

multiple heterogenous platforms.

Asynchronous events can be communicated between arbitrary combinations of

business application components.

Enterprise resources can be concurrently accessed and controlled by arbitrary

combinations of business application components.

Business Application components can be dynamically related to any other

business application component while maintaining full and transparent

referential integrity, support for cascaded object deletion, arbitrary query, and
without breaking encapsulation.

Dynamic, transparent addition and maintenance of properties to business

application components.

Transparent Query and navigation across dynamic relationships and

properties.

Semantic I nteroper ability. (Common Facilities). The following features
characterize components attaining this technology objective (in addition to
characteristics of distributed applications):

Rigorous Semantics which enable plug-and-play, extensibility integrity,

comprehension and control by business user.

Fully traceable life cycle, from business process engineering through

deployment and continuing to final disposition.

Plug & Play Business Application Components. (Vertical Domains). The
following features characterize business application components attaining this
technology objective (in addition to characteristics of Semantically Interoperable
Components):

Fully interchangeabl e business application components available from

multiple vendors.

Highly competitive business application component market; wide range of

price/quality/features; niche market business application component providers.

Business Object Facility April 23, 1996 9

Standard, formal Business A pplication Component certification.

Lifecycle Interoperability;

Semantic | nteroperability
< Distributed Applications |
Object Services
< Client/Server Applications;

Syntactic I nteroperability

ORB

[raoms | —onthic Applcaions]

Figure 2-3 Architectural Objectives

2.1.2 Scope

This specification addresses the “Business Object Facility” described in OMG’s
“Common Facilities RFP-4, Common Business Objects and Business Object Facility”.
The Business Object Facility specifies the architecture required to support interoperable
business objects configured as plug and play business components.

This specification does not address “ Common Business Objects’, which are defined as
those business obj ects representing business semantics that can be shown to be common
across most businesses. This specification does, however, define the set of interfaces and
semantics which all business objects must have in order to achieve the stated goals and
objectives.

Fundamental characteristics of Business Objects limit the scope of the BOF. Business
Objects:
Represent an instantiated thing active in the business domain.
Persistently store state. Business Objects maintain persistence transparent to the
client, and recover their state to be consistent with the rest of the system if any failure
should occur. Persistence may be implemented using Relational Databases, Object

Business Object Facility April 23, 1996 10

Databases, the OMG Persistence Service, or other mechanisms, as long as the
mechanism adheres to transaction semantics.
Frequently access state shared between many users.
Are subject to transactional semantics. Transactions provide both recovery and
concurrency control. A transaction isaunit of work that has the following (ACID)
characteristics:
Atomic; if interrupted by failure, all effects are undone (rolled back). Every
transaction a user intiates will run to completion (that is, the updates will be
made permanently on disk), or that entire transaction will be backed out, as if
the updates the transaction made never occurred.
Consistent; the effect of atransaction preserves invariant properties.
Isolated; its intermediate states are not visible to other transactions.
Transactions appear to execute serially, even if they are performed
concurrently.
Durable; the effect of a completed transaction is persistent; it is never lost
(except in acatastrophic failure).
Manage concurrency and serialization. When concurrent transactions share a
business object (or underlying data store), serialization isimplemented to assure that
the actions of competing transactions are controlled in such away that the result is
equivalent to the transactions being executed one after another instead of
concurrently.

Examples of objects which do not match the profile for Business Objects, and

consequently are outside the scope of the BOF, include:

- Graphical user interface objects.
Documents and Office automation objects, including objects embedded in
spreadsheets, word processors, presentation tools, and other personal productivity
tools. Office automation applications are concerned with routing, processing,
designing, using, and finding documents. Characteristics of these types of objects
include: document sharing between many users (electronic bulletin boards, shared
notes, electronic mail); support for graphics and complex rel ationships among
drawing objects; hypertext links; and dynamic data interconnection (hot links).
Design applications, including software engineering (e.g., Compilers, CASE tools,
Repositories, and other devel opment environment tools) as well as Computer
Automated Design of physical and electronic products. Design applications are
characterized by: many interdependent subsystem designs; designs evolving over time
(complex versioning and management of multiple design aternatives); and
concurrent engineering on multiple versions of large designs. These types of
applications require the ability to lock alarge group of data, such as a composite
object or an entire design, for long periods of time.
Operating systems, TP monitors, communications, DBMS, and other parts of the
system platform infrastructure. These infrastructure objects may be used by Business
objects, but, individually, they do not have all the characteristics of a business object.

Business Object Facility April 23, 1996 11

Transaction Services, Naming services, Concurrency Services, Relationship Services,
and other CORBA services comprising the infrastructure necessary to support
Business Objects.

Many of the above application types, and their application objects, may interoperate with
business objects. “Figure 2-4 Object Architecture” illustrates the relationship of Business
Objectsto other types of objects.

Figure 2-4 Object Architecture

This specification defers much of the definition and integrity of business semantics to the
Meta Object Facility and the meta models anticipated from the Object Analysis & Design
Facility. Architectural objectives related to tight coupling of business objects across their
lifecycle, business semantic interoperability, etc., are dependent upon these facilities.
However, neither of these facilities have been specified. Consequently, this version of
the Business Object Facility narrowsits (IDL specification) scope to the runtime
environment, with admittedly inadequate coverage of lifecycle and semantic
interoperability. As specifications for the Meta Object Facility and OA& D metamodels
become available, the Business Object Facility IDL specification must evolve to ensure
the original architectural objectives are satisfied.

Business Object Facility April 23, 1996 12

2.1.3 Interoperability

Itisaprimary goal of this specification that business application components configured
from business objects be interoperable regardless of the implementation of the
framework, implementation of business semantics, engineering methodology, source
language, operating system, human language or business domain of the business
application components.

Interoperability is maintained at a high semantic level between independently devel oped
business objects through the following mechanisms:
All business objects are derived from a set of interfaces and semantics which address
requirements for interoperability, including:
- Enforcement of ACID properties through consistent use of persistence,
concurrency, and transaction mechanisms.
Consistent use of object relationship mechanisms. Includes ability to enforce
model-based relationship semantics dynamically, independent of, and
transparent to, business object implementation.
Consistent handling of events and notifications. Includes ability to enforce
model-based event semantics dynamically, independent of, and transparent to,
business object implementation.
Consistent handling of compound services across graphs of business objects,
including lifecycle and externalization services.
Semantics for all business objects are rigorously specified within a business object
model. Each business object isdirectly linked with its defining business meta-object.
Enforcement of many semantic definitions are performed directly by the specified
BusinessObject Interface. Additionally, the business object model supports rigorous
formal semantic specifications of complete structural and behavioral models, as well
as pre-conditions, post-conditions, invariants, etc. Consistency between business
meta-objects is enforced by the Meta Object Facility. Within the scope of these
specifications, interoperability is assured between business objects.

2.1.4 Separation of technology issues

The Business Object Facility isolates Business Objects and business application

components from the technology required to implement or use them.
The Business Object Facility does not impose implementation constraints for
persistent data store. The implementor may use the Persistence Service to help isolate
data store technology from business logic. Use of the Persistence Service would
enable replacement of data store technology independent of, and transparent to,
business application components.
In order to ensure business application component interoperability when configuring
enterprise-specific solutions, the Business Object Facility requires presentation/user
interfaces to be isolated from implementations of business semantics. Consequently,
visualization/presentation/user interface technology can be replaced independent of,
and transparent to, business application components.

Business Object Facility April 23, 1996 13

The Business Object Facility defers management of business object semantic
specifications to the Meta Object Facility. The Business Object Facility uses
published interfaces to interoperate with the Meta Object Facility. There are no
technology or implementation dependencies between these facilities.

Aswith all OMG specifications, business object specifications are independent from
technical implementation. Furthermore, although business object specifications
typically incorporate more semantic details than other OM G specifications, there are
no defined technology dependencies between business object specifications and any
particular form of development life cycle, development tools, or artefacts produced
during analysis or other life cycle stages. The Business Object Facility, business
objects, and business application components are thus isolated from the technology of
development lifecycle artefacts, tools, process, and models. Issuesrelated to
interoperability between these technologies will ultimately be addressed by Object
Anaysis & Design and/or Meta Object Facility specifications.

The location and implementation of storage systems and of presentation and rendering
mechanisms are implementation decisions which have no impact on business object
model semantics. The business object model is managed by the Meta Object Facility, in
conjunction with avariety of tools, methodologies, and processes. The Business Object
Facility, along with all business objects, are defined and controlled by the business object
model. The business object model is the driving force of the information system, not the
technology.

2.1.5 Extensibility of business objects

Business objects, and configurations of business objects, will need to be specialized,

tailored, extended, and configured for use in specific vertical business application

domains, enterprises, or even workgroups within the enterprise. Extensibility
requirements are addressed as follows:

- Replacability. The unit of implementation is defined by “module” (which isthe
basis for defining “business application component”). It must be possible to relocate
or replace a business application component with another implementation of the
business application component, transparent to all clients. The replacement must
result in replacement of all business objects which are included in the business
application component. Thisimplies that business objects can not, for example, be
statically linked to business objects of a different business application component.
(Note that implementation of business application components may still utilize a
variety of technical approaches, including multiple physical packages distributed
across heterogeneous platforms). This requirement supports implementation of plug
and play business application components.

Inheritance. Business Objects must support the interface and semantics specified for
their parent Business Objects. For example, each Business Object operation must
specify support for the same type, or supertype, for all corresponding “in” arguments,
and must deliver the same type, or subtype, for all corresponding “out” arguments.

Business Object Facility April 23, 1996 14

Furthermore, adherance must be made to the extended semantic definitions specified
within the business object model, including provision for “looser” pre-conditions,
“tighter” post-conditions, compatible invariants, etc. Likewise, tailored relationship,
event, and lifecycle specifications must ensure adherance to parent business object
specifications. It isassumed that the Meta Object Facility enforces consistency
between al Meta Business Objects. It is aso assumed that the Object Analysis and
Design specification will define mechanisms for consistently and rigorously
expressing business semantics.

A new Business Object which inherits its specification from an existing Business
Object isrequired to physically inherit the implementation of that parent Business
Object, unless the operations are explicitly overriden. This requirement enforces
modularity, ensures adherance to principles of plug and play business application
components, increases reusability, promotes an open competitive market for business
application components, provides uniform inheritance semantics across i nteroperating
ORBs, and reduces the risk of implementaitons becoming monolithic. OMG does not
take a position on implementation inheritance, only interface definition inheritance.
The requirement for plug and play business application components, and the other
requirements listed above, necessitate implementation inheritance. The technical
implementation of inheritance will depend upon the native ORB capability. One of
the following scenarios will exist:

- The ORB supports implementation inheritance. In this scenario, the native
ORB capabilities are used to implement the mandated implementation
inheritance.

The ORB does not support implementation inheritance. In this scenario, all
inherited operations (which are not overridden) must use a delegation
mechanism to ensure that they are physically implemented by the specified
module (business application component).
Context. The Meta Object Facility supports views, or contexts, of the business object
model. Contexts may be used to reduce complexity of the composite model by
exposing only that detail which isrelevant for the particular modeling task. Itis
assumed that the Meta Object Facility enforces consistency between all contexts. The
implementation of a Business Object must encompass the composite of all context
specifications.
Composition. Extensions often include new relationships between business objects or
new properties within objects. New relationships and properties can be modeled and
implemented dynamically, transparent to business object implementations.
Configuration/Tailor. There are several mechanisms for dynamically altering the
behavior or characteristics of business objects:
For many types of semantic specifications, business objects will dynamically
and transparently adopt changes made to the business meta-object
specification. Some of these specifications will become initialization policy
or validation policy. Some of these specifications will become implemented
as roles and relationships with embedded semantics.

Business Object Facility April 23, 1996 15

Some business objects may be designed to dynamically adopt other changes to
their business meta-object specification, such as changes to operation pre-
condition, post-condition. One mechanism for implementing these types of
changes is through the validation policy.
Some business objects may be configurable through a defined operation
interface.
Some business objects may implement a special-purpose business meta-obj ect
which enables configuration tailoring through a defined operation interface.
Some business objects may be associated with atailorable “factory” which has
configuration options at business object create time. One mechanism for
tailoring factory semanticsis through the initialization policy.

Version.

2.1.6 Reusability

The Business Object Facility lays the foundation for specifying and implementing
interoperable business objects. Based on thisfoundation, it is anticipated that OMG
business domain task forces, and other industrial consortia such as SEMATECH and
OAG, will accelerate consensus building activities and begin issuing industry-specific
standards on business objects. The Business Object Facility will provide the industry
standard definition of business object infrastructure and will provide the architectural
layer which isolates technical complexity from the business semantic.

It will ultimately be the business domain consortia which will, through adopted business
object standards, create an open market for business objects and achieve large scale
business application component reuse.

2.1.7 Scalability

The Business Object Facility is acomposition of OMG specifications. Scalability
guidelines accompanying each referenced OM G specification has guided the definition of
the Business Object Facility, providing confidence that the facility itself is scalable.

The scalability of a business object model may be influenced by the granularity of
business objects, distribution of business objects, and complexity of interdependency
between business objects. The issue of business object scalability must be evaluated in
conjunction with future business object specifications.

2.1.8 Ease of development and deployment

A primary business driver for Information Technology includes the profit-oriented
objective to decrease time-to-market for products and services within an environment of
increasing business complexity resulting from accelerating changes to products,
processes, customers, partners, and Information Technology. A successful information

Business Object Facility April 23, 1996 16

strategy will accommodate these business drivers by provisioning business solutions at a
rate commensurate with the increasing rate of business structural change.

Rapid solution delivery in response to continuous business process change requires direct
involvement of empowered users to dynamicaly change their business processes,
workflows, rules, policies, presentation, and other aspects of their environment. The
“ease of development” objective means that business users must be able to directly and
rapidly provision their solutions in an environment of increasing complexity.

The Business Object/Meta Object/Analysis & Design facilities intentionally ensure
isolation of infrastructure from tool or presentation technologies. It isthe tool and
presentation technologies which will ultimately provide “user-friendly” interfaces for
business object development and deployment.

However, the Business Object/Meta Object/Analysis & Design facilities establish the
environment in which the underlying business objective can be attained: rapid
provisioning of increasingly complex business solutions.

Software productivity and ease of development depend not only on sheer bulk but also on
surface area, the number of things that must be understood and properly dealt with in
order to successfully enable interoperability between business application components.
Factors influencing surface areainclude:
Amount of visible information. Surface area increases with the number of names that
are exposed through the software component interface, including data element names,
data types, and function names.
Sequence dependencies. Surface area increases with each requirement that the
business application component user must perform operations in a particular order.
Environment and responsibility scope dependencies. Surface areaincreases whenever
the software component user is responsible for managing lifecycle, persistence,
location, or environmental aspects of software components within a more global
application context.
Technology dependencies. Surface area increases with exposure to each technical
domain and form of interface, including middleware communications, data storage.
Concurrency. Surface area increases when concurrency issues are exposed to the
software component user.

The Business Object Facility supports surface area/complexity reduction by standardizing
on the way in which CORBAservices are composed, configured, and specialized. These
measures reduce the surface area exposed to the user or developer due to environment,
responsibility scope, technology, concurrency, and other factors which are not directly
related to the business problem domain.

Business Object Facility April 23, 1996 17

The Meta Object Facility will support surface area/complexity reduction through the
mechanism of views and contexts. More generally, the Meta Object Facility provides for
tailoring, configuration, and integration of business objects within an enterprise.

The Meta Object Facility in conjunction with the Analysis & Design facility ensure
integrity and consistency of business object models. They ensure integrity and
consistency of business object models across the development lifecycle. They enable
tools to be implemented which automates progression of the business object model
between stages of the development lifecycle.

The Business Object Facility and Business Objects enforce adherance, often dynamically,
to business object specifications. The Business Object Facility enforces the principle of
plug and play business application components, thus enabling widespread reuse. Itis
envisaged that industrial consortia such as SEMATECH and OAG will defined vertical
domain frameworks based on the Business Object Facility structure. These frameworks
will specify business application component semantics in sufficient detail to enable plug
and play between products provisioned from multiple vendors, transparent to any clients.

It isthe realization of tailorable, replacable, reusable, interoperable, off-the-shelf business
application components which consummates the cycle time objective. The business user
will be able to:

- Select, acquire, replace business application components based on factors of
performance, price, quality, technical implementation, etc., confident that the business
specification is followed.

Specify problems in the business language (assuming external tool), confident that
the underlying implementation has a common, formal, rigorous, and consistent,
semantic basis which ensures interoperability with any other business object.
Customize in unplanned ways. Many specifications can be dynamically
added/removed/customized for any business object, such as properties, relationships,
events. Domain-specific specifications will have extended customization options.
These forms of customization do not require any coding or reimplementation of the
business objects.

Business Application Components are the units of implementation. This specification
does not put any packaging or technology constraints on the deployment of business
application components.

There isadirect correspondence, maintained at run time, between the business object
model and business object instances. Business object instances are directly and
dynamically controlled by business object specifications.

2.1.9 Application integration
This specification defines business application component as a configuration of business
objects. Within the context of OMG IDL, a business application component corresponds

Business Object Facility April 23, 1996 18

to “module’. The Business Object Facility specifiesimplementation inheritance,
ensuring a common implementation semantic across all ORBs and enabling plug and play
replacability between different implementations of a business application component.

Thus, a business application component has boundaries which arerigidly defined by the
OMG IDL “modul€e’ construct and contains an arbitrary number of objects, including
business objects and meta business objects. Business objects have the same basic
characteristics as other objects in the OMA, but are differentiated from other objects as
follows:
- Business objects inherit specifications from awell defined BusinessObject interface.
This interface supports the objectives of the Business Object Facility, including
business object interoperability, isolation of technology from businesslogic,
transactional integrity across distributed business objects, implementation inheritance
consistency across interoperable ORBSs, plug and play business application
components, etc.
A Business Object is directly coupled to its defining meta business object. This
permits flexible and dynamic business object models, enforced business semantics,
consistency of business object specification across the development lifecycle, etc.

Thus, the Business Object Facility requires:

- All business objects to inherit from the BusinessObject interface.
All business objects to be associated with a unique Business Meta Object which
inherits from the BusinessM etaObject interface.
All Business Meta Objects must have their business semantics expressed in aform
compliant with the Analysis & Design Facility.
All business application components must have implementation inheritance.

Business objects are not, in and of themselves, business solutions. Part of abusiness
solution requires coupling business objects with a user (in the generic sense, a user can be
amachine on the factory floor, an external application, a person working through a user
interface, etc.). Business objects are intentionally specified to be isolated from external
interfaces. The mechanics of coupling business objects to external interfacesis beyond
the scope of this specification, but it is envisaged that “assembly” tools will enable the
business user to browse the business object model, select business objects, and “wire”
them to visualization components. One form of assembly tool might be workflow. The
Workflow Management Coalition isin the process of defining interoperability
specifications for workflow products. It is anticipated that these interoperability
specifications will be expressed in OMG IDL and implementations will support accessto
CORBA objects. The relationship between workflow models and business object models
isnot clear, thereis some overlap in objectives. This specification does not attempt to
resolve or reconcile potential redundancies between the models.

On the other hand, a business solution also requires specifying business semantics, setting
business policy and rules, defining relationships between business objects, etc. This

Business Object Facility April 23, 1996 19

aspect of business solution provisioning isisolated from visualization, storage, and
implementation technology, preserving the investment across changes in technology.
These semantics are defined on any configuration of Business Meta Objects. In addition
to tailoring individual Business Meta Objects, it is possible to define relationships
between Business Meta Objects, event semantics between Business Meta Objects, rules
and policies spanning Business Meta Objects, etc. These specifications are made as part
of a business solution within some business context. The context-specific specifications
are reflected in the underlying aggregate business object model. The business objects
implementing the business object model reflect specifications madein al business
contexts.

One of the implied requirements of business object interoperability isthat there are no
“boundaries’ which delineate one business solution from another. The term “application”
often implies a*“boundary” which distinguishes and isolates its specification and
implementation from other application specifications. To avoid potential negative and
restrictive implications associated with “application”, it may be prefereable to use the
phrase “contextual business solution”.

A business application component is defined with clearly defined boundaries, per the
definition of “module” in OMG IDL. The relationship between business objects and
business application componentsis also clearly defined, using definitions of module and
interfacein OMG IDL. Contextual business solutions are specified using the business
object model. These contextual business solutions:

- Impact an arbitrary number of business objects. It is possible to identify business
object specifications which are directly or indirectly impacted by any given
contextual business solution.

Overlap, interoperate, impact, and depend upon other contextual business solutionsin
arbitrary ways.

To implement a contextual business solution, each altered Business Meta Object must be
reflected in the implemented Business Object. Some specification changes can be
reflected dynamically in the Business Objects. |If the specification change can not be
reflected dynamically, the Business Object must be reimplemented. The mechanism for
reimplementing a Business Object is beyond the scope of this specification, but it is
envisaged that the process will be aided by tools which automate the generation of
Business Objects based on the Business Meta Object and Business Object Model.

A BusinessObject is a composition of CORBA services, including Transaction services.
All business objects are transactional objects. This definition ensures that units of work
spanning distributed business objects, business application components, processes, and
platforms maintain transactional integrity. Transactional boundaries are defined in the
business object model and are (transparently) enforced by business objects.

Business Object Facility April 23, 1996 20

In addition to transactions, business objects collaborate on relationship integrity,
generation and consumption of events, lifecycle on graphs of business objects,
externalization on graphs of business objects, queries, etc. In some cases, these reflect
explicit business object model constructs. In other cases, the features are implied. The
consistent use and semantic of CORBA services across all business objects ensures
interoperability for all forms of business object collaboration.

2.1.10 Security

The Business Object Facility does not explicitly address Security. Security is provided
by CORBA Security, which implements security features for all applications, whether
they are security aware or not. If required, domain or enterprise-specific Business Objects
may be implemented as security aware.

CORBA Security provides alevel of security functionality which is availableto
applications which are unaware of security. Thisincludes security of the invocation
between client and target object, ORB-enforced access control check and auditing of
security relevant system events. Security aware applications can use security
mechanisms to exert finer level of access control and auditing for encapsulated functions
and data.

2.1.11 How business objectsimplement the business model

The Business Object Facility defines atight coupling between Business Objects and the
corresponding Business Meta Object. The set of all Business Meta Objects and related
semantics constitute the Business Object Model. The Business Object implements, often
dynamically, the business semantics defined by the Business Meta Object.

2.1.12 Legacy applications

Until the objective of plug & play business application components has been achieved,
we can view all forms of application software as “legacy”. Legacy software will bein
many different forms, will be purchased or developed in-house, will be in different stages
of maturity with respect to the “Figure 2-3 Architectural Objectives’ on page 12, and
will utilize many different forms of technology infrastructure. A detailed legacy
transition plan will have to be devised by each enterprise to represent their unique
configuration of legacy software. This specification can not address al possible
scenarios. However, asaguide, it will be useful to consider desirable characteristics at
each successive architectural layer.

There are many paths which could be followed on the transition from our legacy
applications towards achieving plug & play business application components.
Sometimes the choices are arbitrary and multiple alternatives would achieve similar
results. Unfortunately, we do not often have the luxury of pursuing multiple paths

Business Object Facility April 23, 1996 21

concurrently. The following criteriawill serve as aguide for determining the path to be
followed:
Closest Conformance with the vision of plug and play Business Application
Components.
Lowest Solutions Provisioning Cycle Time.
L east complex business application components (least exposed “surface area’).
L oosest runtime coupling (plug and play business application components).
Highest business semantic integrity (tightest coupling across business application
component lifecycle).
L ongest business application component life (longevity: greatest potential for
insulating business application components from change).

For each architectural layer, a“reference point” is established based on the definition of

services and capabilities for that layer. The following guidelines are with respect to

transitioning legacy from one reference point to the next:
Plug & Play Business Application Components. This reference point constitutes
the objective, the point at which legacy transition concerns end.
Semantic I nteroper ability. (Common Facilities). It isrisky to speculate on future
industry standards for business application components. It isunlikely that those
future standards will align exactly with any given enterprise model. To protect
software investment and minimize potential disruption both with external components
(e.g., visualization components, etc.) as well as interface between business application
components, it is recommended to define business application components and
business objects with large granularity. These large grained business objects can later
be implemented as “containers’ for standardized business objects, thus preserving
existing interfaces and semantics during the transition to plug & play business
application components. The Business Object Facility capability to define
relationships, events, etc., will enable most large grained business objects to emulate
their “legacy” behavior using smaller grained plug & play business application
components. Since the Business Object Facility is model-based and semantics are
rigorously specified, it isvery likely that the transition to plug & play business
application components could be automated. Most difficulties associated with this
transition are likely to stem from overlapping boundaries of standard versus
enterprise-defined business application components. If a standard business
application component has functionality split across multiple enteprise-defined
business application components, migration will be more difficult. Larger granularity
of enterprise-defined business application components will help reduce the number of
conflicts. The other advantage with large granularity, at this stage, is reduction of
exposed complexity (surface areq).
Distributed Applications. (Object Services). In consideration of transitioning to
“semantic interoperability”, business objects and business application components
should be large grained. Lack of the Business Object Facility will result in extra
effort to incorporate and efficiently use CORBAservices. All business objects should
inherit from a single enterprise-specific BusinessObject. Thiswill ease the transition

Business Object Facility April 23, 1996 22

to the Business Object Facility: the enterprise-specific BusinessObject can be
modified to inherit from the facility’ s BusinessObject. Dynamic specification of
relationships, events, and other semantics are impractical at this stage. Nevertheless,
static implementations of relationships, events, persistence, transaction, etc. should be
devel oped and should be consistent with corresponding Business Object Facility
specifications. Consistency in these static implementations will facilitate replacement
with their dynamic, specification-driven counterparts when transitioning to the
“semantic interoperability” stage. In place of business semantics defined in the
Business Meta Object, descriptions must be written in (english) language and
implemented manually. The semantics will need to be entered into the business
object model, so they should be written with rigor and formalism which aligns with
the Meta Object Facility and Analysis & Design Facility. Business Application
Components should use implementation inheritance.

This stage is technically challenging from an implementors viewpoint. Without the
tools, formal semantics, and enforced conformity of implementation, there are risk
factors and productivity concerns which will deter many from transitioning into this
stage. Other than proof-of-concept and technology prototypes, consideration should
be given to skipping this level.

Client/server applications. (ORB). In consideration of transitioning to higher levels
of capability, business objects and business application components should be large
grained. Dueto lack of CORBAservices at this stage, there are severe distribution
constraints on business application components and underlying technology
implementations. To ensure system (transaction, concurrence, persistence, referential,
etc.) integrity, each business object operation must be executed within
implementation constraints of asingle (logical) DBMS. Amongst other things, this
normally means execution must occur within the same thread/process/address space
(transaction/unit of work/concurrency implementation restriction). In order to ensure
adherance to this constraint, each operation is implemented as a transaction. Since
there are no concurrency or nested transaction mechanisms, there is no ensured
system integrity if an operation were in turn to execute other OMG IDL defined
operations. Furthermore, in order to implement relationship semantics and referential
integrity, there must exist acommon database which is used by one or more business
application components. In effect, the client/server application stage has the same
characteristics as monolithic applications except that the visualization technology
(and other external interfaces) are isolated from the business logic. Relationship
semantics and implementations are not exposed through the OMG IDL, but may be
independently specified in some data definition language. Due to lack of any genera
interoperability between business objects at this stage, there islittle need for
formalism, rigor, or consistency in semantics, and the semantics would be limited to
operation semantics (e.g., pre-conditions, post-conditions). In apractical sense,
business application components at this stage are wrappered “ stove pipe” applications
which expose their interface using a consistent, programming language-independent,
implementation-independent, location transparent mechanism. Other stove pipe

Business Object Facility April 23, 1996 23

applications can use the interface to execute operations, but there are no mechanisms
to ensure system transaction/ concurrency integrity between the operations. This

restriction also implies that implementation inheritance should not be used. Thus, all
business objects must be defined independently - inheritance should not be specified.

Transitioning from the client/server application stage to higher architectural levels
follow these guidelines:

- Retain the defined interface. Re-implement the interface asa “router” which
del egates operation execution to the new distributed business object
implementation. Thiswill preserve al existing presentation and other external
interfaces.

Use transaction/concurrency service in the distributed business object

implementation.

Isolate the data store technology. Reimplement the data store interface using

persistence service.

Reimplement relationships using relationship service.

Implement other services for business object per guidelines for “distributed

applications’.
Monolithic applications. The primary result of transitioning from “monolithic
applications’ to “client/server applications’ isthe isolation of user and external
interfaces from business logic. ORBs are implemented on virtually every platform
and support most of the programming languages used to implement enterprise legacy
applications. Typically, interactions with enterprise legacy applications are defined in
terms of transaction semantics and consequently map to the characteristics of a
“client/server application” operation as described above. Once separation of business
logic and user interface is complete, business logic can be “wrapped” for ORB access.
It should not be necessary, at this stage, to ater businesslogic. Businesslogic
wrapping is typically an automated process, there will generally be one business
object operation per transaction. One monolithic application may correspond to one
or afew business objects (to maintain large granularity at this stage).

It should be noted that the above guidelines assume that unrestricted modifications can be
made to the “legacy”. Often, the legacy is a purchased product and can not be modified.
In some cases, “wrappering” technology, product-provided APIs and exits, and other
tailoring options may enable partial transition of the legacy towards the objective of plug
and play components. Ultimately, the best course of action is to influence the product
vendor to migrate his software to open standards.

2.1.13 Flexibility and longevity
Business objects and/or application components enhance the flexibility, maintainability
and longevity of application implementation in the following ways:
Technology isolation. Business objects are independent of both visualization
technology and data store technology. Changes to technology implementation can

Business Object Facility April 23, 1996 24

occur without modification to business object implementation. Business objects will
outlive the underlying technology.

Industry standard components. Many applications will be implemented through
tailoring and combining industry standard plug and play components. The need for
enterprises to write and maintain their own code will be greatly reduced.
Extensibility, reusability, ease of development. All the arguments provided on these
topicsin previous sections apply to flexibility, maintainability, and longevity of
application implementations.

2.1.14 Generality and desktop integration

Business Objects can interoperate with other forms of application components such as
user interface, agents, world wide web, palmtop computers or any other system. Based
on existing and proposed CORBA interoperability standards, Business Objects can
interoperate with application components implemented on Microsoft OLE/COM,
Internet/JAV A, or other CORBA implementations.

Furthermore, Business Objects themselves could be implemented on a non-CORBA
infrastructure if:
There is an implementation of CORBA interoperability supported for that non-
CORBA infrastructure, and
The CORBA services required by the Business Object Facility and all Business
Objects are accessible and maintain integrity across the interoperability interface.

2.1.15 Proof of commonality

This Business Object Facility is a composition of the fundamental services necessary to
implement and ensure enterprise-wide interoperability between distributed business
objects. These services are the distributed environment equivalent of the mainframe
services required to support the high-integrity, high-reliability, high-availability business
applications of global enterprises.

2.1.16 Specification of business objects and metadata

OMG IDL isnot sufficient to represent the semantics of business objects. True
interoperability requires exposing information as to what the interface means and
requires. The Business Object Facility relies upon the Meta Object Facility to specify
business object semantics, including constraints, rules, roles, policies, relationships,
states, attributes, visibility, dependencies, protocols, pre- and post- conditions, error
conditions, warning conditions or events. A subset of this specificationisIDL. The
Meta Object Facility will maintain synchronization between the full business object
semantic definition and the interface repository (IDL).

2.1.17 Multilingual use
The Business Object Facility isacomposition of lower level services. There has been no
attributes or operations added which are subject to internationalization.

Business Object Facility April 23, 1996 25

Internationalization facilities can be freely used in any derived common business object
or business domain object.

2.2 Conceptual M odel

2.2.1 Business Semantic Model

A meta-object is an object that represents aspects or features of another object. A meta-
object creates and manages representation concepts, along with the actual object instances
they represent. Typical examples of meta-objects are model, class, operation, constraint,
and association. A collection of meta-object types will provide the primitive building
blocks needed to represent the complex semantics of object models such as the business
object model. The term object schema is defined as a composition of related meta-
objects that together represent semantics of the objects being modeled.

A business object is an object which represents an instantiated thing active in the business
domain. A business meta-object is a meta-object which specifies the interface and
semantics for such a business object, including at least its business name and definition,
attributes, behavior, relationships, rules, policies and constraints. A Business Object
Model is an object schema which represents the complete and rigorous semantic
specification of interoperating business objects, including their definition, attributes,
behavior, relationships, events, rules, policies, constraints, and any other aspect or feature
required to be associated with business objects. The Business Meta-Objects and the
Business Object Model are implemented within an infrastructure specified by the Meta
Object Facility.

A business application component is a configuration of objects, including business
objects, which specifies the unit of implementation. This specification does not impose
any specific implementation technology. Implementations can utilize technology which
enables replication, federation, distributed packaging, etc. The OMG IDL module
construct defines the objects and interfaces constituting a business application
component.

Business Objects are implementations of Business Meta Object specifications. Business
Objects are implemented within an infrastructure specified by the Business Object
Facility. The Business Object Facility constrains Business Object implementations to
adhere to their Business Meta Object semantic specification, ensures implementation
integrity for the Business Object Model, and enforces architectural principles enabling
plug and play business application components.

The Meta Object Facility, in conjunction with appropriate tools, promotes ease of
construction, use, maintenance, and assembly of business solutions from business object
specifications. The Meta Object Facility enables the business solution provider to focus
on business semantics while minimizing his exposure to underlying technical complexity.

Business Object Facility April 23, 1996 26

The Business Object Facility isthe architectural layer which couples the business
semantic (Business Meta Object) to atechnical implementation (Business Object). The
Business Object Facility is not viewed as afacility which is used directly by an end user.
It is envisaged that various automated mechanisms will be used to transform semantics
defined in Business Meta Objects into Business Objects compliant with this Business
Object Facility specification.

Asshown in “Figure 2-5 Business Semantic Model”, the Business Object Facility
standardizes usage, configuration, and composition of CORBA specifications to ensure
business object interoperability. The Business Object Facility isthe infrastructure upon
which all business objects are implemented. The Business Object Facility consists of the
following:
Business Object. The interface specification for Business Object isinherited by all
business objects. It isthe specification of the minimum required level of functionality
necessary to implement an interoperable business object. The Business Object
specification is a composition of CORBAservices designed to ensure interoperability.
Additionally, the Business Object is created from, and controlled by, an associated
Business Meta Object. The Business Meta Object contains the rigorous business
semantic specification for the Business Object.
Business Services. A collection of services (interfaces and objects) that support basic
functions for using and implementing interoperable business objects. Business
services are necessary to construct any distributed business application and are aways
independent of specific business application domains.

The Business Object Facility has critical dependencies upon existing and developing
OMG specifications. The Business Object Facility specification is, in particular,
dependent upon the Meta Object Facility and the Object Analysis & Design
specifications which are being devel oped independently and concurrently. This
specification is predicated on the existence of certain capabilities within those
independent specifications. The exact form of interface to those capabilitiesis
speculative and will need to be reconciled with the specifications ultimately adopted. For
the purposes of this specification, the reference model depicted in “Figure 2-6 OA&D
Object Semantic Specification Reference Model” will be used to describe capabilities of
OA&D relevant to the Business Object Facility.

Business Object Facility April 23, 1996 27

Business Object x

Business Object y

Use, Specialize, Extend roles, relationships...)

CORBA Services | J| CORBA Facilities

Figure 2-5 Business Semantic M odel

Formal Specification Lan

Traits
State-independent assertions
Abstract values
Functions
Relations

Behavior Definition

Pre-conditions
Post-conditions
Invariants...

Obj Semantic

Specification
Prover/
Consistency check

OA&D Lifecycle
Object Generators|

Figure2-6 OA& D Object Semantic Specification Reference M odel

Business Object Facility April 23, 1996

28

2.2.2 Business Transaction M odel

Business objects are persistent objects subject to transactional semantics. Transactions
provide both recovery and concurrency control. A transaction isaunit of work that has
the following (ACID) characteristics:
Atomic; if interrupted by failure, al effects are undone (rolled back). Every
transaction a user intiates will run to completion (that is, the updates will be made
permanently on disk), or that entire transaction will be backed out, asif the updates
the transaction made never occurred.
Consistent; the effect of atransaction preserves invariant properties.
Isolated; its intermediate states are not visible to other transactions. Transactions
appear to execute serialy, even if they are performed concurrently.
Durable; the effect of acompleted transaction is persistent; it is never lost (except in a
catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed or rolled
back. When atransaction is committed, all changes made by the associated requests are
made permanent. When atransaction isrolled back, all changes made by the associated
request are undone. The Transaction Service defines transaction semanticsin a distributed
environment.

To ensure transactional integrity, business objects must be executed within a transactional
context. Some operations on Business Objects are defined as TransactionalClients. A
Transactional Client establishes the transactional context, controls the usage and
sequencing of Business Object operations, enables event monitoring, and provides an
easy to use and stable interface for the user and other external resources (see “Figure 2-7
Non-Transactional Objects Must use Transactional Client Operations”).

Every business object is atransactional object. This ensures propagation of transactional
context to other business objects.

Business objects are characterized by frequent access to data shared between many users.
Issues related to long transactions or conversational transactions (which are required, for
example, in CAD applications) are generally not applicable to business objects. The
concept of nested transaction is traditionally applied within the context of long
transactions, a nested transaction being one possible mechanism to implement long
transactions. The semantics of nested transactions include provision for subtransactions
to independently commit or roll back. Commiting a subtransaction is provisional,
durability depends upon commiting the top-level transaction. Thus, the ultimate control
comes from the top-level “transaction” which makes the final decision on commit versus
roll back. The net effect on the integrity of the system, from the users viewpoint, is the
same asif it were aflat transaction.

Business Object Facility April 23, 1996 29

A nested transaction capability is necessary in an environment which must embed
transactions, such as those containing wrappered legacy applications. The legacy
application islikely to have its transaction logic buried in inaccessible code. When anew
business requirement changes the boundaries of “unit of work” (for example, a new
requirement to ensure transfer of control of some entity between two independent
applications), anew high-level transaction must be implemented. Assuming the legacy
transaction can not be changed, the only way to implement the new requirement isto use
the mechanism of nested transaction.

Nested transactions require transaction service implementations and resources which are
subtransaction aware. It is a capability which business object implementations can utilize
for wrapping legacy applications. This specification does not explicitly require nested
transaction capability. The interface specification and semantics of business objects do
not reference or expose any aspects of nested transactions.

This specification is based on implicit transaction contexts. Transactional clients can use
Transaction Services to support multi-threaded implementations of implicit transaction
contexts. Explict transactions contexts could be supported by specific business objects
if special circumstances warrent their use.

Explicit identification of Transactional Client Operations:
Raises “ Subtr ctionsUnavailable” exception

Business Object Business
Object

Business Object

Business

Transactional
ransaction Object

Client
Operations

Business Object

Exter nal Resources; User Interfaces;
Non-Transactional Objects

Transactional Context

Figure 2-7 Non-Transactional Objects Must use Transactional Client Operations

Business Object Facility April 23, 1996 30

2.2.3 Business Object Dynamic Relationship Model

The Business Object Architecture utilizes the Relationship service to implement dynamic
relationships (see “Figure 2-8 Business Object Dynamic Relationship Model”). In this
architecture, Business Objects are “nodes’. The roles and relationships can be managed
by external objects. In particular, the semantics of relationships are represented in the
Business Object Model and enforced through the Business Meta Object and Business
Object implementations.

This relationship model is not only a standard implementation of defined relationship
services, it is a standard implementation of both externalization and life cycle services.
Consequently, relationships have well defined syntax, semantics, and implementations
supporting:
- Full referential integrity.

Compound operation propagation semantics.

Graph and bounded traversal semantics.

Life cycle propagation semantics.

Externalization/internalization propagation semantics.

In order to more closely conform to the ODMG object model, and to directly utilize
defined life cycle and externalization services for compound operations, the relationship
service has been specialized to support only binary (instead of n-ary) many-to-many
relations.

The specific semantics of any relationship is defined in the Business Object Model.

These semantics must, of course, be consistent with the relationship service semantics.

Semantic implications of the relationship service and business object model include:
Each “role” within a business object node instance must be unique and can not be a
descendent of another role associated with that instance. This restriction further
requires uniqueness amongst all roles “inherited” by the business object node
Instance.
Each “role” within a relationship must be unique and can not be a descendent of
another role associated with that relationship.

Business Object Facility April 23, 1996 31

e Relationship Model

EID\Ib(J) 32[) Roles must be unique for
Roles this Business Object;

All derived from “Reference”;

Semantics via Meta-Object;

Dynamic implementation

Relationship Binary, not n-ary

: . (ODMG-93, €tc.)
Referential Integrity;

Graphg/traversal s/propagation;
Lifecycle Services

Business
Object
Roles (Node)

Figure 2-8 Business Object Dynamic Relationship M odel

2.2.4 Business Object Dynamic Event Model

The Business Object Facility utilizes the Event service to dynamically implement
associations between event suppliers and consumers. The architecture enables arbitrary
associ ations between event suppliers, event consumers, and event channels (see “Figure
2-9 Business Object Event Model”). Event suppliers deliver eventsto an event channel,
event consumers retrieve events from an event channel.

Business objects are transactional objects. By default, business object operations expect
to be invoked within atransactional context. Some business object operations may serve
the role of transactional client. Transactional client operations do not need or expect to
be invoked within a transactional context. Since the asynchronous nature of event
management does not permit propagation integrity for the transactional context, only
transactional client operations can be event consumers.

Business Objects can be event suppliers and/or event consumers. An event consumer
must be atransactional client operation (i.e., there is no transactional context established
when the event is delivered). In addition to business objects, user/external objects (e.g.,
resources, GUIs) can be event consumers. A default configuration of business objects,
event channels, and transactional clients are defined in the business object model (and can

Business Object Facility April 23, 1996 32

be dynamically changed). A user/external resource can dynamically add itself to an event
channel and consequently receive (filtered) events from any business object.

All Business Objects, as event suppliers, use the Push Model. Use of the push model
greatly simplifies the responsibility of business objects. It ensuresthat the event channel
mechanism isimmediately and effectively used to implement complex queuing, quality
of service, and other event semantics.

All business object transactional clients, as event consumers, also use the Push Model.
Use of the push model greatly simplifies the responsibility of transactional clients. It
ensures that the event channel mechanism immediately and effectively communicates
events to the transactional client.

A user/external resource can choose to use either the Push Moddl, or the Pull Modél, at its
discretion.

The event service supports both generic and typed interfaces. The generic interface,
which is a specific named operation supporting a single argument of any type, facilitates
dynamic implementation of events between any business object and any transactional
client (and by extension to any user/external resource). Typed interfaces support any
form of oneway operation. Typed events are useful for explicitly identifying and
declaring named events and their arguments. For each business object, the Business
Object Facility supports the definition of EventsSupplied by that business object and
EventsConsumed by that business object. The use of typed events aso facilitates event
filtering, the routing of events to the actual event consumer logic, isolation and
independence of EventsConsumed logic from the Business Object logic, tight coupling
between event specifications within the business object model and business object
implementation, and the enablement of support for dynamic assembly of business
solutions from interoperabl e business obj ects and other components.

Business Object Facility April 23, 1996 33

Supplied & Consumed Events
,:

Fully Enumerated in IDL/
Supplied gror‘s“mer Business Object Model
Events Oxy
Push
Supplier .
Business
Business Object
Object
Pusl
. Con
Business
Component Supplier Consumed
Proxy Events
Push or Pull Consumer \—r
Business
External Resource Component

Figure 2-9 Business Object Event M odel

2.2.5 Business Object Dynamic Property M odel

The Business Object Architecture utilizes the Properties service to implement dynamic
attributes for business objects. Property value initialization can be specified as part of
the business object initialization policy. Validation of property values can be specified as
part of the business object validation policy.

Properties defined on the Business Meta Object will propagate to initialization and
validation policies.

2.2.6 Business Object Externalization M odel

The Business Object Architecture utilizes the Externalization service to implement
externalization/internalization. Each Business Object isa
CosCompoundExternalization::Node and has the full semantics of compound object
externalization, including operations on graphs of related objects. The semantics of
externalize, internalize are controlled by the Business Object Model and ensure
preservation of referential integrity.

Business Object Facility April 23, 1996 34

2.2.7 Business Object System Management M odel

The System Management Facility administers “managed objects’. It provides a
consistent foundation for finding object factories, implementing object factories,
implementing policy on business object instances, and incorporating System
Management functionality such as distribution, deployment, monitoring, recovery, etc.,
with the rest of the Business Object Architecture (see “Figure 2-10 Business Object
System Management Model”).

The System Management Facility provides an enterprise factory find capability based on
object type, desired location, and kinds of policy objectsregistered to it. The factory find
capability isimplemented with the System Management Library object. Factories are
implemented from interfaces derived from InstanceManager. Instance managers, in
addition to being business object factories, provide the mechanism for implementing
initialization and validation policies, independent of the business object instances. In
order to maintain consistency and integrity, these policies are intended to be driven from
the business object model. Each business object is created by, and associated with, an
instance manager. Business objects are created as policy-driven objects which utilize the
Systems Management framework in support of the requirements for custom rules and
policies.

Within the context of the Business Object Architecture, a Business Application
Component is the unit of replacable functionality (plug and play). The Business
Application Component is a primary unit to be administered by the System Management
Facility. Each Business Application Component has a Component Manager which
coordinates System Management functionality such as distribution, deployment,
monitoring, recovery, etc., with the configuration of business objects contained in the
component.

Business Object Facility April 23, 1996 35

Library

Per Interface + (Contains)
Implementation One Business
characteristics Application
| 45 Component
_ _ Manager
Business Object |nstance M anager per Module
Per
Per Policy
Instance Context
/ / /
Vi Vw4 2
BusinessObject | || Initialization Policy | L| Validation Policy

Figure 2-10 Business Object System M anagement M odel

2.2.8 Life Cycle Model

Each Business Object is a LifeCycleObject and has the full semantics of compound life
cycles, including operations on graphs of related objects. The semantics of copy, move,
delete are controlled by the Business Object Model and ensure preservation of referential

integrity.

Creation of a Business Object (as well asroles, relationships, etc.) is performed by an
Instance Manager, which is a Factory. Finding Business Object factoriesis done viathe
factory_finder operation defined for Library within the System Management Facility.
Instances of Business Objects can be found via the Instance Manager lookup_object
operation. All Business Objects have labels which are unigue amongst the contained
object instances of the Instance Manager. Other Business Objects, roles, and
relationships can be found via navigation from some Business Object.

Instance Managers themselves are created from the System Management Library object,
which isthe factory for instance managers.

Business Object Facility April 23, 1996 36

Library
Instance Manager Factory + lookup
Business Object Factory Finder

J L Create & Find

Instance Manager
Business Object Factory + lookup
Factory for roles, relationships....

Create & Find

Business Object
1\ J
/

Business Object | Business Object

Copy, Move, Delete;
Compound Life Cycle Semantics (Graphs)

Figure 2-8 Business Object Life Cycle M odel

2.2.9 Contracted Roles

To achieve the objective of plug & play business components, encapsulation must occur
in two directions. The external world knows what a business object does, but does not
know how it doesit. From the inside |ooking out, the business object requires (contracts)
aset of serviceroles. The business object specification must describe what contracted
service roles are required, but should not specify which business objects implement them
or how they are implemented.

Each contracted role has one interface definition. The contracted role interface defines
operations which may be implemented in any arbitrary (semantic-compliant) manner, and
may utilize techniques such as delegation, transformation, aggregate propageation, or
complex sequences of operations to multiple business objects.

As apossible scenario for the evolution of a contracted role, consider a business object
whichisinitially defined within a narrow domain context. In this case, the contracted
role may simply “pass through” operations to a business object which isrelated viaa
defined relationship “role”. As system contexts merge into larger contexts, vertical
domain frameworks standards evolve, or new common business objects are standardized,
the contracted role implementation will change. The change will reflect a mapping
between the new configuration of business objects and the original contracted role
Ssemantic.

Business Object Facility April 23, 1996 37

The mix of business objects, legacy systems, purchased systems, and standards-
compliance will be different, and evolve differently, for each enterprise. The contracted
role mechanism helps preserve the integrity and longevity of individual business objects
within these dynamic and enterprise-specific environments.

Asshown in “Figure 2-11 Contracted Roles: Excapsulation”, the contracted role object is
implemented as a plug & play subcomponent, separate from the business object
subcomponent. Thus, enterprise-specific tailoring of the contracted role implementation
is possible without altering the business object.

o %)
Q » —
wg = Policy, Semantic, Event, o
£ = Lifecycle Subcomponents = 0
8
5
2 =] Business Object Contracted Role B
Sa Subcomponent Subcomponent ‘g
@ = Explicit enumeration é_
B of contracted role serviges £
S = and semanticsin IDL B
@)
Lafg =) o
3 Contracted Role 3
2 = Subcomponent 3
o =
& : 5
Business Component O

Figure 2-11 Contracted Roles: Excapsulation

2.2.10 Other Considerations
Startup Service is assumed to encompass the Transaction Service, thus ensuring
reliable recovery of al business objects to their last committed state.
Transaction Serviceis assumed to have capabilities which include load balancing,
gueueing, recovery, scheduling, redundancy, fault tolerance.
Version control of the Business Object Model and other aspects of the devel opment
environment are assumed to be in the scope of the Meta Object Facility, not the
Business Object Facility.

Business Object Facility April 23, 1996 38

Some Change Management considerations, particularly run-time versioning issues,
are considered to be within the long-term scope of the Business Object Facility.
OMG specifications related to versioning and change management should be
incorporated into the Business Object Facility specification as they become available.
However, it is premature and speculative to incorporate versioning and change
management in this version of the Business Object Facility specification.

The deployment of configurations of components, including the management of
implementation inter-dependencies, is considered to be within the scope of Systems
Management, not the Business Object Facility.

Implementation of Business Object Replication is considered to be within the scope
of the Replication Service, not the Business Object Facility. OMG specifications
related to replication should be incorporated into the Business Object Facility
specification as they become available. It is premature and speculative to incorporate
replication in this version of the Business Object Facility specification.

Persistence implementation is out of scope. The persistence mechanismis
intentionally not exposed in the interface definitions. As a practical matter,
conformity on persistence implementation is not likely to occur soon. Thereistoo
much variance in technical approaches and constraints, from wrappered legacy
applications to transparent object data base store. The defined Persistent Object
Service will not satisfy the requirement for plug & play data store technology.

Event Services are assumed to have reliability, guaranteed message sequencing,
persistence of events, persistence of event subscription, and assurance that events are
not lost on failure/recovery of subscriber. Mobile agents will require persistent
events, surivival through intermittent connectivity, etc. All of these issues arein the
scope of Event Services and appropriate Quality of Service implementations. These
issues are considered outside the scope of the Business Object Facility.

Monitoring and recovery. The Business Application Component Manager has
responsibility for monitoring and recovery associated with business objects. The
BAC Manager will utilize features of the System Management Facility to implement
monitoring and recovery. System Management specifications related to monitoring
and recovery should be incorporated into the Business Object Facility specification as
they become available. It is premature and speculative to define specific monitoring
and recovery measures in this version of the Business Object Facility specification.
Logging services. Logging is considered to be within the long-term scope of the
Business Object Facility. OMG specifications related to logging services should be
incorporated into the Business Object Facility specification as they become available.
It is premature and speculative to incorporate logging in this version of the Business
Object Facility specification.

Notification/message service. Mechanismsfor issuing notifications via email, beeper,
etc. are assumed to be addressed in a future OMG specification. It is further assumed
that such a service will be based on the Event Services. Since business objects are
enabled to supply events, and those events can be routed to a Notification/message
service, explicit considerations for Notification/messaging are not necessary withinthe
Business Object Facility specifications.

Business Object Facility April 23, 1996 39

2.3 Interface Description: OMG |IDL

module CfBusiness {

/I Transactional Object
interface Transactional Object: :: CosTransactions.: Transactional Object {} ;

/I Instance
interface Instance: Transactional Object,
.. PolicyRegions::PolicyDrivenBase { } ;

interface InstanceManager: :: Managedl nstances:: I nstanceM anager {
readonly attribute ::CfMetaObject::MetaObject meta_object,
¥
interface Instancel nitialization: ::PolicyObjectAdmin::InitializationPolicy{ } ;
interface InstanceValidation: :: PolicyObjectAdmin::ValidationPolicy {
attribute ::CosLifeCycle::Criteria validation;

};

// Module Manager

interface ModuleManager: InstanceM anager {
readonly attribute Regld startup id;
readonly attribute Regld shutdown_id;
startup(in NVList arg_list);
shutdown(in NV List arg_list);

¥

interface ModuleValidation: InstanceValidation {};

Il Operations
interface Operations: ::CosCompoundLifeCycle::Operations,
Transactional Object{ };

interface OperationsManager: InstanceM anager,
::CosCompoundLifeCycle::OperationsFactory {};

// Node
interface Node: Instance,
::CosCompoundLifeCycle::Node,
::CosProperty Service::Property SetDef,
::CosCompoundExternalization::Node{};

interface NodeM anager: InstanceM anager,

::CosStream:: Streamabl eFactory,
::CosPropertyService:: Property SetDefFactory {};

Business Object Facility April 23, 1996 40

interface Nodel nitialization: Instancel nitialization,
::CosGraphs::NodeFactory {};
interface NodeValidation: InstanceValidation {};

/I ReferencesRole
interface ReferencesRole: Transactional Object,
::CosLifeCycleReference::ReferencesRole,
::CosExternalizationReference::ReferencesRole { } ;

interface ReferencesRoleManager: InstanceM anager,
::CosRelationships::RoleFactory {
const ScopedName role_type value = “CfBusiness.:ReferencesRole”;
const maximum_cardinality maximum_cardinality _value = unbounded;
const minimum_cardinality minimum_cardinality value= 0;
const ScopedName related object_types value = “CfBusiness:.:Node’;
¥

/I ReferencedByRole
interface ReferencedByRole: Transactiona Object,
::CosLifeCycleReference::ReferencedByRole,
::CosExternalizationReference::ReferencedByRole { } ;

interface ReferencedByRoleManager: ReferencesRoleM anager {
const ScopedName role type value = “CfBusiness.:ReferencedByRol€e”;

};

Il Relationship
interface Relationship: Transactional Object,
::CosL ifeCycleReference::Relationship,
::CosExternalizationReference::Relationship {} ;

interface RelationshipManager: InstanceM anager,
::CosRel ationships::Rel ationshipFactory {
const ScopedName relationship_type value = “CfBusiness::Relationship”;
const ScopedName named_rolel = “CfBusiness::ReferencesRole’;
const ScopedName named_role2 = “ CfBusiness::ReferencedByRole’;

};

Il Entity
module Entity {
interface Entity: :: Node,
::CosTypedEventComm:: TypedPushSupplier ,
::CosTypedEventComm:: TypedPushConsumer {
readonly attribute

Business Object Facility April 23, 1996 41

CosTypedEventChannel Admin:: TypedEventChannel
event_channel;

readonly attribute
CosTypedEventChannel Admin:: TypedProxyPushConsumer
consume;

readonly attribute CosEventChannel Admin::ProxyPushSupplier
supplier;

CfBusiness::Contract::Role ContractRole(ScopedName Role);

¥

interface EntityManager: NodeM anager {
attribute
CosTypedEventChannel Admin:: TypedEventChannel
event_channel;
attribute
CosTypedEventChannel Admin::Key supported_interface;
attribute CosEventChannel Admin::Key uses interface;
¥
interface Entitylnitialization: Nodel nitialization {};
interface EntityValidation: NodeValidation {};
interface EntityEventsSupplied{
define_property_with_mode(in Entity entity,
in PropertyName property _name, in any property value,
in PropertyModeType property _mode);
delete_property (in Entity entity, in PropertyName
property _name);
add_role (in Entity entity, in Role a role);
remove_role(in Entity entity, in ::CORBA::InterfaceDef of type);
b
}; I* Entity module */

module Event {
interface EntityEventsConsumed{
readonly attribute Entity entity;
void destroy();
[* any event operations */
b
}; I* Entity module */

module Contract {
interface Role {
const ScopedName role_name = “ CfBusiness::ReferencesRole’;
readonly attribute Entity contracted by;
/* following operations are being contracted */

Business Object Facility April 23, 1996 42

}

}; /* Contract module */
}; /* CfBusiness module */
I/ Relationship macros

I/ General Relationship
#define CfRelates\
(module,nodel,rolel,rolelmin,rolelmax,rel ationship,role2,role2min,role2max,node2)\
interfacerolel : ::CfBusiness::ReferencesRole {} ;)\
interface rolel##Manager: ::CfBusiness.:ReferencesRoleManager {\
const ScopedName role_type value = #module “::” #rolel;\
const maximum_cardinality maximum_cardinality _value = rolelmax;\
const minimum_cardinality minimum_cardinality _value = rolelmin;\
const ScopedName related object_types value = #module “::” #nodel;\
B\
interface relationship: ::CfBusiness::Relationship {};\
interface relationshi p##Manager: ::CfBusiness.:RelationshipManager {\
const ScopedName relationship_type value = #module “::” relationship;\
const ScopedName named _rolel = #module “::” #rolel;\
const ScopedName named_role2 = #module “::” #role2;\
B\
interface role2 : ::CfBusiness::ReferencedByRole {} ;)\
interface role2##Manager: ::CfBusiness.:ReferencedByRoleManager {\
const ScopedName role type value = #module “::” #role2;\
const maximum_cardinality maximum_cardinality _value = role2max;\
const minimum_cardinality minimum_cardinality _value = role2min;\
const ScopedName related _object_types value = #module “::” #node2;\
I\

/ Many to Many References
#define CfReferences(module, nodel,rolel, relationship,role2,node2)\
CfRelates(modul e,nodel,rolel,0,unbounded,rel ationship,rol€2,0,unbounded,node?)

/I Containment

#define CfContains (module,nodel,rolel, relationship,role2,node2)\
CfRelates(modul e,nodel,rolel,0,unbounded,rel ationship,role2,1,1,node2)

Business Object Facility April 23, 1996 43

2.4 Interface Description: Behavior

2.4.1 Business module

2.4.1.1 TransactionalObject
interface Transactional Object: :: CosTransactions.: Transactional Object {} ;

Thisis an abstract specification for al nodes, roles, and relationships within the Business
Object Architecture. Each object is persistent and has transactional semantics. A
business object typically contains or indirectly refers to persistent data that can be
modified by requests.

2.4.1.1.1 Inherited Interfaces
2.4.1.1.1.1 ::CosTransactions::Transactional Object

The semantics of ::CosTransactions:.: Transactional Object are inherited by
TransactionalObject. These semantics permit an operation within Transactional Object to
be invoked with or without an established transaction context. Transaction Service
operations have behavior which depends upon whether or not a transaction context has
been defined. Within the Business Object Facility, the existence (or lack) of atransaction
context is an explicit pre-condition of virtually every operation on Transactional Objects.
Each operation can be seen to operate in one of the following invariant roles:
TransactionRequired. The operation requires atransaction context upon entry.
Will raise a TransactionRequired exception if invoked outside of atransaction
context.
Transactional Client. The operation does not require a transaction context upon
entry. The operation may begin atransaction, in which case it must complete the
transaction prior to returning control to the client (i.e., the post condition of any
operation must ensure that the transaction context is the same as the pre condition
transaction context). A SubtransactionsUnavailable exceptionisraised if the client
thread already has an associated transaction and the Transaction Service
implementation does not support nested transactions.

IDL will be used to express these behavioral semantics as exceptions. An operation will
be defined to raise TransactionRequired if the operation requires a transaction context
upon entry. An operation will be defined to raise SubtransactionsUnavailable if the
operation does not require a transaction context upon entry.

Unless otherwise stated, all operations either inherited or explicitly stated in any interface
derived from Transactional Object will, in addition to defined exceptions, raise the
TransactionRequired exception.

2.4.1.1.1.2 Persistence
Persistence must be implemented for all objects derived from TransactionalObject. Any
object derived from Transactional Object which has multiple inheritance requires

Business Object Facility April 23, 1996 44

persistence on al inherited interfaces and implementations, unless otherwise stated in this
specification.

Persistence is implementation dependent, but must adhere to transaction semantics.
Persistence may be, but is not required to be, implemented using the Persistent Object
Service.

24.1.2 Instance
interface Instance: Transactional Object,
:: PolicyRegions::PolicyDrivenBase { } ;

This interface defines an object which combines the semantics of a persistent
Transactional Object and policy driven managed instances of System Management.

2.4.1.2.1 Inherited Interfaces
24.1.2.1.1 Transactional Object

The semantics of Transactional Object are inherited by Instance, with no additional
specializations.

2.4.1.2.1.2 :: PolicyRegions::PolicyDrivenBase
The semantics and interface definitions for :: PolicyRegions:.:PolicyDrivenBase are
inherited by Node, with no additional specializations.

2.4.1.2.2 InstanceM anager
interface InstanceManager: :: ManagedI nstances::InstanceM anager {
readonly attribute ::CfMetaObject::MetaObject meta_object;

h

2.4.1.2.2.1 readonly attribute ::CfM etaObject::MetaObject meta_object
This attribute is an object reference to the ::CfMetaObject::MetaObject which defines the
Business Object within the Business Object Model.

2.4.1.2.2.2 ::ManagedInstances:: InstanceM anager
Instance managers provide operations for the registration of initialization policy objects
and validation policy objects. These policy objects are specifically associated with the
type of policy-driven based managed object supported by the instance manager.
Initialization policy objects support operations to define the intial (default) values of the
policy-drive object attributes. Validation policy objects support methods that can
validate initial values or changes to object attributes, and also methods that can be used to
control object behaviours.
The semantics of ::Managedinstances:: InstanceManager are inherited by
InstanceM anager, with the following specializations and additions:
get_instances_interface returns InterfaceDef for Instance.
create_object operation returns a Instance.

Business Object Facility April 23, 1996 45

create_object operation will call initialize_policy_driven_object for each
Instancel nitialization related to Instance.

2.4.1.2.3 Instancelnitialization
interface Instancel nitialization: ::
PolicyObjectAdmin::InitializationPolicy{
attribute ::CosLifeCycle::Criteriainitialization;
};

attribute ::CosL ifeCycle::Criteriainitialization

This attribute contains a sequence of name-value pairs which are to be used to initialize
the new object. The criteria defined for Instancel nitialization are:

criterion name type of criterion value inter pretation

Thislist will be extended by specializations of Instancel nitialization.

2.4.1.2.3.1 PolicyObjectAdmin::InitializationPolicy

The semantics and interface definitions for PolicyObjectAdmin::InitializationPolicy are

inherited by Instancel nitialization , with the following additional specializations:
get_policy_driven_object_type returns “::CfBusiness:.:Instance”.
initialize_policy_driven_object will perform additional initialization of a Instance
based on initialization.

2.4.1.24 |InstanceValidation
interface InstanceValidation: :: PolicyObjectAdmin::ValidationPolicy {
attribute ::CosLifeCycle::Criteria validation;
1

attribute ::CosL ifeCycle::Criteria validation
This attribute contains a sequence of name-value pairs which are to be used to validate
the object. The criteriadefined for InstanceValidation are:

criterion name type of criterion value inter pretation

Thislist will be extended by specializations of InstanceValidation.

2.4.1.2.4.1 PolicyObjectAdmin::ValidationPolicy

The semantics and interface definitions for PolicyObjectAdmin::ValidationPolicy are

inherited by InstanceValidation , with the following additional specializations:
get_policy_driven_object_type returns “::CfBusiness::Instance”.

Business Object Facility April 23, 1996

validate policy_driven_object will perform additional validation of a Instance, as
specified in validation.

2.4.1.3 Module
2.4.1.3.1 ModuleM anager

interface ModuleManager: InstanceM anager {
readonly attribute Reqgld startup id;
readonly attribute Regld shutdown _id;
startup(in NVList arg_list);
shutdown(in NV List arg_list);

¥

The responsibility of the ModuleManager isto perform interaction between the System
Management Facility and the configuration of objects embodied by a business
application component (i.e., amodule). The ModuleManager is governed by a set of
validation policies. Although an InstanceM anager, the ModuleM anager does not create
object instances.

When the ModuleM anager is created, it registersitself with the ORB shutdown and
startup services. The request identifiers are recorded in the shutdown_id and startup _id
attributes, respectively. The shutdown and startup registration will cause startup() to be
invoked when the ORB starts and shutdown() when the ORB shuts down.

The details of the startup and shutdown operations are implementation-dependent. Note
that the Startup Service is assumed to be used by the Transaction Service, thus ensuring
reliable recovery of al business objects to their last committed state. The startup and
shutdown operations are thus intended to ensure restoration, as required, of other
dependent resources.

The semantics of InstanceManager are inherited by ModuleManager, with the following
specializations and additions:
create_object(...) will always raise “NoFactory” exception.

2.4.1.3.2 ModuleValidation
interface ModuleValidation: InstanceValidation {};

The semantics and interface definitions for InstanceValidation are inherited by
ModuleValidation, with the following additions and specializations:
validate _policy_driven_object(...) is passed the ModuleM anager as the
object_to validate.

Business Object Facility April 23, 1996 47

2.4.1.4 Operations
interface Operations: ::CosCompoundLifeCycle::Operations,
Transactional Object{ } ;

2.4.1.4.1 Inherited Interfaces
2.4.1.4.1.1 Transactional Object

The semantics and interface definitions for Transactional Object are inherited by
Operations, with no additions and specializations.

2.4.1.4.1.2 ::CosCompoundLifeCycle::Operations
The semantics of :: CosCompoundLifeCycle::Operations are inherited by Operations,
with the following specializations and additions:
The argument “there”
in both operations copy and move should be set to a
::Managedinstances::Library.
The argument “ starting_node”
in operations copy, move, and remove should be set to a
Node.
The operations copy, move, and remove should be performed in a transaction context
which preserves ACID properties. In particular, it should be possible to rollback the
operation.

2.4.1.4.2 OperationsM anager
interface OperationsManager: | nstanceM anager,
::CosCompoundLifeCycle::OperationsFactory {};

The semantics of InstanceManager are inherited by OperationsManager, with the
following specializations and additions:
get_instances_interface returns InterfaceDef for Operations.
create_object(...) will aways raise “NoFactory” exception.

The semantics of ::CosCompoundLifeCycle::OperationsFactory are inherited by
OperatlonsM anager, with the following specializations and additions:
create_compound_operations() returns a Operations.
create_compound_operations()will call initialize policy_driven object for each
Operationslnitialization related to new Operations.
create_compound_operations() implements semantics of
::CosCompoundL ifeCycle::OperationsFactory::create_compound_operations().

24.1.5 Node
interface Node: Instance,
::CosCompoundLifeCycle::Node,
::CosCompoundExternalization::Node,
::CosPropertyService::Property SetDef {

Business Object Facility April 23, 1996 48

}

This interface defines an object which has the semantics of the persistent Instance, a
relationship node, compound life cycle objects, externalizable compound objects,
dynamic property management, policy semantics, and managed instances of System
Management. A “Node” supports the life cycle interfaces (copy, move, remove) for
graphs of business objects. A Node supports full referential integrity semantics, including
cascaded propagation of remove semantics through arbitrary graphs of business objects.
Node also supports externalization semantics for graphs of objects, as defined in the
Externalization service.

2.4.15.1 Inherited Interfaces
2.4.1.5.1.1 Instance

The semantics and interface definitions for Instance are inherited by Node , with the
following additions and specializations:
The argument “there”
in both LifeCycle operations copy and move should be set to a
::Managedinstances::Library.
The LifeCycle copy, move, and remove operations should be implemented as
indicated in section A.3 of LifeCycle services:
Node creates an object that supports the Operations interface.
Node issues corresponding life cycle requests to the Operations, using itself as
the starting node.
Node issues destroy request to destroy the compound operation.

2.4.1.5.1.2 ::CosCompoundLifeCycle::Node
The semantics and interface definitions for ::CosCompoundLifeCycle::Node,
::CosObjectldentify::1dentifiableObject and ::CosGraphs::Node are inherited by Node,
with the following additions and specializations:

The operation

get_life_cycle object();

will return itself.

The argument “there”

in both operations copy _node and move_node should be set to a

::Managedinstances::Library.

The attribute “related_object” will return itself.

2.4.1.5.1.3 ::CosCompoundExternalization::Node
The semantics and interface definitions for ::CosCompoundExternalization::Node and
::CosStream:: Streamabl e are inherited by Node, with the following additions and
specializations:
The argument “there”
in operations “internalize_node”’ and “internalize_from_stream” should be set to a
::Managedinstances::Library.
operation externalize to _stream should follow semantics for a Node, namely:

Business Object Facility April 23, 1996 49

Delegate the externalize_to_stream() to the Streaml O by invoking

write_graph().

The Streamable (Node) object would subsequently receive an

externalize_node to_stream() and write out itsinternal state.

- write_object() should not be called by this object for other nodes in the graph.

operation internalize_from_stream should follow semantics for a Node, namely:

Delegate the internalize_from_stream() to the sourceStreaml O by invoking

read_graph() with the same FactoryFinder argument as the there parameter

passed in to the internalize_from_stream() operation.

The Streamable (Node) object would subsequently receive an

internalize_node_from_stream() and read in itsinternal stete.

read_object() should not be called by this object for other nodes in the graph.

2.4.1.5.1.4 ::CosPropertyService::PropertySetDef
The semantics and interface definitions for ::CosPropertyService::PropertySetDef are
inherited by Node , with no additional specializations.

2.4.1.5.2 NodeM anager
interface Nodel nitialization: Instancel nitialization,
::CosGraphs::NodeFactory,
::CosStream:: Streamabl eFactory,
::CosPropertyService:: Property SetDefFactory {};

The semantics of InstanceManager are inherited by NodeM anager, with the following
speuahzahons and additions:
get_instances_interface returns InterfaceDef for Node.
create_object operation returns a Node.
create_object operation will call initialize_policy_driven_object for each
Nodelnitialization related to new Node.
create_object implements semantics of ::CosGraphs::NodeFactory::create_node and
::CosStream:: Streamabl eFactory::create_uninitialized().
create_object implements semantics of ::CosPropertyService::Property SetDef Factory
:.create_propertysetdef().

2.4.1.5.2.1 ::CosGraphs::NodeFactory
The semantics of ::CosGraphs.:NodeFactory are inherited by NodeManager, with the
following specializations and additions:
create_node(in Object related object) isimplemented as create object(...).
“related_object” isthe new Node.

2.4.1.5.2.2 ::CosStream::StreamableFactory
The semantics of ::CosStream:: Streamabl eFactory are inherited by NodeManager, with
the following specializations and additions:

Business Object Facility April 23, 1996 50

create_uninitialized() isimplemented as create_object(...).

2.4.1.5.2.3 ::CosPropertyService::PropertySetDefFactory

The semantics of ::CosPropertyService::PropertySetDefFactory are inherited by

NodeManager, with the following specializations and additions:
create_propertysetdef, create constrained_propertysetdef,
create initial_propertysetdef are implemented as create_object, with initialization
criteria set to satisfy semantics of operation defined in
::CosPropertyService::PropertySetDef Factory.

2.4.1.5.3 Nodelnitialization
interface Nodel nitialization: Instancelnitialization {};

The semantics and interface definitions for Instancel nitialization are inherited by
Nodelnitialization , with the following additional specializations:
get_policy driven_object_type returns “::CfBusiness.:Node”.
initialize_policy_driven_object will perform following additional initialization of a
Node:
The set of role types specified in “node” of attribute initializationCriteriawill
be added to the created Node.
Any “property” criteriain initialization attribute will be used to initialize
properties for the created Node.
attributeinitialization. This attribute is extended as follows:

criterion name type of criterion value inter pretation

“property” ::CosPropertyService::Prop | initialization parameters for
ertyDefs Property Service.

“node’ sequence Set of role typesto add to
<::CORBA::InterfaceDef> | new node at initialization.

2.4.1.5.4 NodeValidation
interface Node Validation: InstanceValidation {};

The semantics and interface definitions for InstanceV alidation are inherited by
NodeValidation , with the following additional specializations:
get_policy driven_object_type returns “::CfBusiness.:Node”.
validate policy_driven_object will perform following additional validation of a
Node:
The set of role types specified in “node” of attribute validationCriteria must be
defined for the Node. A subtype of role type will satisfy the criteria.
The “filter” constraint for “property” within the criteriavalidation attribute is
tested for satisfaction of the constraint.
attribute validation. Thisattribute is extended as follows:

criterion name type of criterion value inter pretation

“property” Criteria property criteriafor properties.

Business Object Facility April 23, 1996 51

“node’ sequence Set of role typeswhich
<::CORBA::InterfaceDef> | must exist for node.

The " Criteria property” definition is as follows:

criterion name type of criterion value inter pretation

“filter” string constraint on object
properties, expressed in the
Constraint Language
specified in B.2 of
LifeCycle specification.

2.4.1.6 ReferencesRole
interface ReferencesRole: Transactional Object,
::CosLifeCycleReference::ReferencesRole,
::CosExternalizationReference::ReferencesRol e {

h

2.4.1.6.1 Inherited Interfaces
2.4.1.6.1.1 Transactional Object

The semantics and interface definitions for Transactional Object are inherited by
ReferencesRole , with no additional specializations.

2.4.1.6.1.2 ::CosLifeCycleReference::ReferencesRole
The semantics and interface definitions for ::CosLifeCycleReference::ReferencesRole are
inherited by ReferencesRole, with no specializations.

2.4.1.6.1.3 ::CosExternalizationReference::ReferencesRole

The semantics and interface definitions for
.:CosExternalizationReference::ReferencesRol e are inherited by ReferencesRole, with no
specializations.

2.4.1.6.2 ReferencesRoleM anager
interface ReferencesRoleManager: InstanceManager,
::CosRelationships::RoleFactory {
const ScopedName role_type value = “CfBusiness.:ReferencesRole”;
const maximum_cardinality maximum_cardinality _value = unbounded;
const minimum_cardinality minimum_cardinality value= 0;
const ScopedName related object_types value = “CfBusiness::Node’;
¥
This interface enables the factory_finder capabilities of the System Management Facility

to be used to find the factory for ReferencesRole. The ReferencesRoleis created using
the create _role operation, which does not add objects to the set, nor require uniquely

Business Object Facility April 23, 1996 52

labeled member objects. Thus, the advantage of flexible, consistent factory finding is
combined with the elimination of substantial System Management overhead. This
approach does, however, have the restriction that there are no policies associated with
roles. This approach has been taken for all roles and relationships.

Constants are used to incorporate semantics into the interface definition. This approach
enables simplification of interface definition for specialized roles and relationships.

The semantics of InstanceManager are inherited by ReferencesRoleManager, with the
following specializations and additions:

get_instances_interface returnsrole_type.

create_object(...) will aways raise “NoFactory” exception.

The semantics of ::CosRelationships::RoleFactory are inherited by
ReferencesRoleManager, with the following specializations and additions:
- create_role(...) operation returns an object of typerole_type.
create _role(...) implements semantics of ::Relationships::RoleFactory::create_role(...).
the value of attribute role_typeisthe ::CORBA::InterfaceDef found by
::CORBA::lookup(role_type value).
the value of attribute maximum_cardinality is the constant
maximum_cardinality value.
the value of attribute minimum_cardinality is the constant
minimum_cardinality_value.
the value of attribute related object typesis a single value sequence containing the
::CORBA::InterfaceDef found by ::CORBA::lookup(related object types value).

2.4.1.7 ReferencedByRole
interface ReferencedByRole: Transactiona Object,
::CosLifeCycleReference::ReferencedByRole,
.:CosExternalizationReference::ReferencedByRol e {

}

The semantics and interface definitions for Transactional Object,

::CosL ifeCycleReference::ReferencedByRole, and
::CosExternalizationReference::ReferencedByRol e are inherited by ReferencedByRole,
with no additional specializations.

2.4.1.7.1 ReferencedByRoleM anager
interface ReferencedByRoleManager: ReferencesRoleManager {
const ScopedNamerole _type value = “CfBusiness.:ReferencedByRole’;

};

Business Object Facility April 23, 1996 53

The semantics of ReferencesRoleManager are inherited by ReferencedByRoleManager,
with arole_type value override.

2.4.1.8 Relationship
interface Relationship: Transactional Object,
::CosL ifeCycleReference::Relationship,
::CosExternalizationReference::Relationship {
}
The semantics and interface definitions for Transactional Object,
.:CosLifeCycleReference:: Relationship, and ::CosExternalizationReference::
Relationship are inherited by Relationship, with no additional specializations.

2.4.1.8.1 RelationshipManager
interface RelationshipManager: InstanceManager,
::CosRel ationships::Rel ationshipFactory {
const ScopedName relationship_type value = *“ CfBusiness::Relationship”;
const ScopedName named_rolel = “CfBusiness::ReferencesRole’;
const ScopedName named _role2 = “CfBusiness::ReferencedByRole”;

};

The semantics of InstanceManager are inherited by RelationshipManager, with the
following specializations and additions:

get_instances_interface returns relationship_type.

create _object(...) will always raise “NoFactory” exception.

The semantics of ::Relationships::RelationshipFactory are inherited by
RelationshipManager, with the following specializations and additions:
create(...) operation returns an object of type relationship_type.

create(...) implements semantics of

::Relationships::Rel ationshipFactory::create (...).

the value of attribute relationship_typeisthe ::CORBA::InterfaceDef found by

::CORBA ::lookup(relationship_type value).

the value of attribute named _role typesis atwo value sequence:
{named_rolel,:;:CORBA::InterfaceDef found by
::CORBA::lookup(named_rolel)}.
{named_role2,::CORBA::InterfaceDef found by
::CORBA::lookup(named_role2)}.

2.4.1.9 Entity
interface Entity: :: Node,
::CosTypedEventComm:: TypedPushSupplier ,
::CosTypedEventComm:: TypedPushConsumer {
readonly attribute
CosTypedEventChannel Admin:: TypedEventChannel

Business Object Facility April 23, 1996 54

event_channel;

readonly attribute
CosTypedEventChannel Admin:: TypedProxyPushConsumer
consumer;

readonly attribute CosEventChannel Admin::ProxyPushSupplier
supplier;

h

An Entity isaNode which also supports event generation and consumption. As an event
supplier, Entity supplies the typed events defined in the interface EntityEventsSupplied.
As an event consumer, Entity consumes the typed events defined in the interface
EntityEventsConsumed.

When Entity is created, it is associated with an event channel. A
TypedProxyPushConsumer is created and connected with the event channel and the
Entity. This TypedProxyPushConsumer supports typed events defined in
EntityEventsSupplied. The EntityEventsSupplied interface documents the events
generated by Entity. To generate atyped event <I>, the following pseudo-code is
executed:

((EntityEventsSupplied *)(consumer->get_typed consumer()))->operation<|>

A TypedProxyPushSupplier is created and connected with the event channel and the
Entity. This TypedProxyPushSupplier supports typed events defined in
EntityEventsConsumed. When atyped event <I> isreceived, the following pseudo-code
is executed:

((EntityEventsConsumed *)get_typed consumer())->operation<I|>

EntityEventsConsumed is intended to be a mechanism, independent of Entity itself,
which catches events and can perform operations on Entity based on those events.
EntityEventsConsumed can be replaced, tailored, and specialized to capture events from
any combination of events and event suppliers.

It isassumed that:
The TypedEventChannel supports a federation of TypedEventChannels.
The TypedEventChannel supports administrative functions which specify event
filtering. Filtering should include:
Selection of suppliersfor a consumer.
Selection of event typesfor aconsumer. Thisislargely satisfied through the
TypedEvent mechanisms.
Selection based on message content.
The EventServices have transactional integrity.

Business Object Facility April 23, 1996 55

readonly attribute CosTypedEventChannelAdmin:: TypedEventChannel
event_channdl;
The TypedEventChannel associated with the Entity at create time.

readonly attribute CosTypedEventChannel Admin:: TypedProxyPushConsumer
consumer;
The TypedProxyPushConsumer associated with the Entity at create time.

readonly attribute CosEventChannelAdmin::ProxyPushSupplier supplier;
The ProxyPushSupplier associated with the Entity at create time.

2.4.1.9.1 Inherited Interfaces
24.1.9.1.1 Node

The semantics and interface definitions for Node are inherited by Entity, with the
following specializations:
remove() will also perform disconnect_push_consumer () on consumer,
disconnect_push_supplier() on supplier, and destroy() on events_consumed.

2.4.1.9.1.2 ::CosTypedEventComm::TypedPushSupplier

The semantics and interface definitions for ::CosTypedEventComm:: TypedPushSupplier

are inherited by Entity, with no specializations.

2.4.1.9.1.3 ::CosTypedEventComm::TypedPushConsumer
The semantics and interface definitions for

::CosTypedEventComm:: TypedPushConsumer are inherited by Entity, with the following

specializations:

get_typed consumer() returns the EntityEventsConsumed associated with the Entity

at create time.

2.4.1.9.2 EntityManager
interface EntityManager: NodeM anager {
attribute
CosTypedEventChannel Admin:: TypedEventChannel
event_channel;
attribute

CosTypedEventChannel Admin::Key supported_interface;

attribute CosEventChannel Admin::Key uses interface;
¥

The semantics of NodeManager are inherited by EntityManager, with the following
specializations and additions:

get_instances _interface returns InterfaceDef for Entity.

create_object operation returns a Entity.

Business Object Facility April 23, 1996

56

create_object operation will call initialize_policy driven _object for each
Entitylnitialization related to new Entity.

create_object operation sets Entity event_channel attribute to the EntityManager
event_channel attribute. A TypedProxyPushConsumer is created, based on the
supported_interface attribute, and areference is placed in the Entity consumer
attribute. A ProxyPushSupplier is created, based on the uses_interface attribute and a
reference is placed in the Entity supplier attribute. A EntityEventsConsumed is
created corresponding to the uses interface, and areferenceis placed in the Entity
events_consumed attribute.

attribute CosTypedEventChannelAdmin:: TypedEventChannel event_channel;
The event_channel attribute contains the object reference to the TypedEventChannel to be
used when creating objects.

attribute CosTypedEventChannelAdmin::Key supported_interface;
The supported _interface attribute represents the EntityEventsSupplied interface.

attribute CosEventChannelAdmin::Key uses interface;
The uses_interface attribute represents the EntityEventsConsumed interface.

2.4.1.9.3 Entitylnitialization
interface Entitylnitialization: Nodel nitialization {} ;

The semantics and interface definitions for Nodel nitialization are inherited by
Entitylnitialization , with the following additional specializations:
get_policy driven_object typereturns “::CfBusiness:: Entity”.

2.4.1.9.4 EntityValidation
interface EntityValidation: NodeValidation {};

The semantics and interface definitions for NodeV alidation are inherited by
EntityValidation , with the following additional specializations:
get_policy_driven_object_type returns “::CfBusiness.: Entity”.

2.4.1.9.5 EntityEventsSupplied
interface EntityEventsSupplied{
define_property_with_mode(in Entity entity,
in PropertyName property _name, in any property _value,
in PropertyModeType property _mode);
delete property (in Entity entity, in PropertyName property _name);
add_role (in Entity entity, in Role a role);
remove_role(in Entity entity, in ::CORBA::InterfaceDef of _type);

Business Object Facility April 23, 1996 57

This interface defines the events supplied by the Entity object. Each event is specified as
an operation, subject to the following restrictions:

All parameters must be in parameters only.

No return values are permitted.

The operations may optionally be declared oneway.

Thisinterfaceis primarily informational. Depending upon Event Service
implementation, there may or may not be an actual implementation of the operations.
The interface definition is referenced by the EntityManager supported_interface attribute.

As examples of potential supplied events:
define_property_with_mode(in Entity entity, in PropertyName property_name,

in any property_value, in PropertyModeType property _mode);
(Optional). Event supplied whenever a property is defined, the mode is changed, or the
valueis changed. The event identifies the Entity for which a property characteristic
changed, along with the property name, the new value, and the new mode.

delete_property (in Entity entity, in PropertyName property_name);
(Optional). Event supplied whenever a property is deleted. The event identifies the Entity
for which a property has been deleted, along with the property name.

add_role (in Entity entity, in Rolea_role);
(Optional). Event supplied whenever arole is added to an entity. The event identifies the
Entity for which arole has been added, along with therole.

remove_role(in Entity entity, in :: CORBA::InterfaceDef of_type);
(Optional). Event supplied whenever aroleisremoved. The event identifies the Entity
for which arole has been removed, along with the type of role.

2.4.1.9.6 EntityEventsConsumed
interface EntityEventsConsumed{
readonly attribute Entity entity;
void destroy();
[* any event operations */

}

This interface defines the events consumed by the Entity object. Each event is specified
as an operation, subject to the following restrictions:

All parameters must be in parameters only.

No return values are permitted.

The operations may optionally be declared oneway.

Thisinterface definition serves two purposes:

Business Object Facility April 23, 1996 58

defines the interface used to implement typed events for the consumer. It isthe
interface returned for the get_typed_consumer() operation on Entity.

defines the interface which must be called from the ProxyPushSupplier. The interface
definition is referenced by the EntityManager uses_interface attribute.

readonly attribute Entity entity;
Contains the object reference to Entity which islinked to this EntityEventsConsumed.

void destroy();

Destroys the object. Intended for use only via Entity remove().

2.4.2 Relationships

A set of macro definitions which simplify the specification of role and relationship
interfaces. The Business Object Facility requires each relationship between business
objects x and y to be defined in terms of an explicit association between business object
X, role x, relationship, roley, business object y.

2.5 Glossary

abort
active

atomicity

begin
behavior

business application
component

business meta-object

business object

Business Object

Business Object Facility

rollback. [OM G 95-03-31]

The state of atransaction when processing isin progress and
completion of the transaction has not yet commenced. [OM G
95-03-31]

A transaction property that ensure that if work isinterrupted by
failure, any partially completed results will be undone. A
transaction whose work completes is said to commit. A
transaction whose work is completely undone is said to rollback
(abort). [OM G 95-03-31]

An operation on the Transaction Service which establishes the
initial boundary of atransaction. [OM G 95-03-31]

The observable effects of an object performing the requested
operation including its results binding. [OM G CORBA]

A configuration of objects, including business objects, which
specifiesthe unit of implementation. The OMG IDL module
construct defines the objects and interfaces constituting a
business application component.

A meta-object which specifies the interface and semantics for a
business object, including at least its business name and
definition, attributes, behavior, relationships, rules, policies and
constraints.

An object which represents an instantiated thing active in the
business domain. A Business Object implements a Business
Meta Object specification.

Infrastructure used to manage Business Objects. The Business

April 23, 1996 59

Facility

Business Object
Model

client

committed

completion

consistency

CORBA
durability

encapsulation

event

factory object
federation

flat transaction

implementation

Business Object Facility

Object Facility constrains Business Object implementations to
adhere to their Business Meta Object semantic specification,
ensures implementation integrity for the Business Object Model,
and enforces architectural principles enabling plug and play
business application components.

An object schema which represents the compl ete and rigorous
semantic specification of interoperating business objects,
including their definition, attributes, behavior, relationships,
events, rules, policies, constraints, and any other aspect or
feature required to be associated with business objects.

The code or process that invokes an operation on an object.
[OMG CORBA]

The property of atransaction or atransactional object, when it
has successfully performed the commit protocol. [OM G 95-03-
31]

The processing required (either by commit or abort) to obtain the
durable outcome of atransaction. [OM G 95-03-31]

A property of atransaction that ensures that the transaction’s
actions, taken as a group, do not violate any of the integrity
constraints associated with the state of its associated objects.
This requires that the application program isimplemented
correctly: the Transaction Service provides the functionality to
support application data consistency. [OM G 95-03-31]
Common Object Request Broker Architecture. [OMG CORBA]
A transaction property that ensures the results of a successfully
completed transaction will never be lost, except in the event of
catastrophe. It isgeneraly implemented by a combination of
persistent storage and alogging service that provides a backup
copy of permanent changes. [OM G 95-03-31]

The process of hiding al of the details of an object that do not
contribute to its essential characteristics. Typically, the structure
of an object and the implementation of its methods are hidden.
The terms encapsulation and information hiding are usually
interchangeable. [SEMATECH CIM]

A state change of an object that causes the behaviour of an
object. [OM G 95-12-05]

An object that creates another object. [OM G 95-12-05]

The principle whereby each comonent retains its autonomy
rather than becoming subordinate to another. [OM G 95-12-05]
A transaction that has no subtransactions - and that cannot have
subtransactions. [OM G 95-03-31]

A definition that provides the information needed to create an
object and allow the object to participate in providing an
appropriate set of services. Animplementation typically

April 23, 1996 60

implementation
definition language

implementation
inheritance

implementation object

implementation
repository
in-doubt

inheritance

instance

interface

interface inheritance
interface object
interface repository

interoperability

isolation

Business Object Facility

includes a description of the data structure used to represent the
core state associated with an object, aswell as definitions of the
methods that access that data structure. 1t will also typically
include information about the intended interface of the object.
[OMG CORBA]

A notation for describing implementations. The implementation
definition language is currently beyond the scope of the ORB
standard. It may contain vendor-specific and adapter-specific
notations. [OMG CORBA]

The construction of an implementation by incremental
modification of other implementations. The ORB does not
provide implementation inheritance. Implementation inheritance
may be provided by higher level tools. [OMG CORBA]

An object that serves as an implementation definition.
Implementation objects reside in an implementation repository.
[OMG CORBA]

A storage place for object implementation information. [OM G
CORBA]

The state of atransaction if it is controlled by atransaction
manager that can not be contacted, so the commit decisionisin
doubt. [OM G 95-03-31]

The construction of a definition by incremental modification of
other definitions. See interface and implementation inheritance.
[OMG CORBA]

An object isan instance of an interface if it provides the
operations, signatures and semantics specified by that interface.
An object isan instance of an implementation if its behavior is
provided by that implementation. [OM G CORBA]

A listing of the operations and attributes that an object provides.
This includes the signatures of the operations, and the types of
the attributes. An interface definition ideally includes the
semantics aswell. An object satisfies an interfaceif it can be
specified as the target object in each potential request described
by the interface. [OM G CORBA]

The construction of an interface by incremental modification of
other interfaces. The IDL language provides interface
inheritance. [OMG CORBA]

An object that servesto describe an interface. Interface objects
reside in an interface repository. [OMG CORBA]

A storage place for interface information. [OM G CORBA]
The ability for two or more ORBSs to cooperate to deliver
requests to the proper object. Interoperating ORBSs appear to a
client to beasingle ORB. [OMG CORBA]

A transaction property that allows concurrent execution, but the

April 23, 1996 61

language binding or
mapping

life cycle object
Meta Object Facility

meta-object

method

multiple inheritance
name binding
nested transaction

object

object creation
object destruction

object reference

object schema

OMA

Business Object Facility

results will be the same asif execution was serialized. Isolation
ensures that concurrently executing transactions cannot observe
inconsistenciesin shared data. [OM G 95-03-31]

The means and conventions by which a programmer writing in a
specific programming language accesses ORB capabilities.
[OMG CORBA]

An object whose interfaces are defined by the life cycle services,
specifically remove, copy, and move. [OM G 95-12-05]

The infrastructure used to manage meta-objects and object
schemas.

An object that represents aspects or features of another object. A
meta-object creates and manages representation concepts, along
with the actual object instances they represent. Typica examples
of meta-objects are model, class, operation, constraint, and
association. A collection of meta-object types will provide the
primitive building blocks needed to represent the complex
semantics of object models such as the business object model.
An implementation of an operation. Code that may be executed
to perform arequested service. Methods associated with an
object may be structured into some or more programs. [OM G
CORBA]

The construction of a definition by incremental modification of
more than one other definition. [OM G CORBA]

A name-to-object association. A name binding is always defined
relative to a naming context. [OM G 95-12-05]

A transaction that either has subtransaction or is a subtransaction
on some other transaction. [OM G 95-03-31]

A combination of state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of
relevant requets. An object is an instance of an implementation
and an interface. An object modelsareal-world entity, and it is
implemented as a computational entity that encapsul ates state
and operations (internally implemented as data and methods) and
responds to requestor services. [OMG CORBA]

An event that causes the existence of an object that is distinct
from any other object. [OMG CORBA]

An event that causes an object to ceaseto exist. [OM G
CORBA]

A value that unambiguously identfies an object. Object
references are never reused to identify another object. [OM G
CORBA]

A composition of related meta-objects that together represent
semantics of the objects being model ed.

Object Management Architecture. [OM G 95-12-05]

April 23, 1996 62

OoMG
operation

operation name
ORB

persistent object

propagation

recoverable object

recoverable server

referential integrity

request

resource

resource manager

results

Security service

server

server object

Business Object Facility

Object Management Group. [OM G 95-12-05]

A servicethat can be requested. An operation has an associated
signature, which may restrict which actual parameters are valid.
[OMG CORBA]

A name used in arequest to identify an operation. [OM G
CORBA]

Object Request Broker. Provides the means by which clients
make and receive reguests and responses. [OM G CORBA]

An object that can survive the process or thread that created it. A
persistent object exists until it isexplictly deleted. [OM G
CORBA]

A function of the transaction service that allows the Transaction
context of aclient to be associated with a transactional operation
on aserver object. The Transaction Service supports both
implicit and explicit propagation of transaction context. [OM G
95-03-31]

An object whose data is affected by committing or rolling back a
transaction. [OM G 95-03-31]

An object that registers a resource (not necessarily itself) with a
transaction coordinator to participate in transaction compl etion.
[OMG 95-03-31]

The property ensuring that an object reference that existsin the
state associated with an object reliably identifes a single object.
[OMG CORBA]

A client issues arequest to cause a service to be performed. A
regquest consists of an operation and zero or more actual
parameters. [OM G CORBA]

An object in the Transaction Service that is registered for
involvement in two-phase commit. Corresponds to a resource
manager. [OM G 95-03-31]

An X/Open term for a component which manages the integrity of
the state of a set of related resources. [OM G 95-03-31]

The information returned to the client, which may include values
aswell as status information indicating that exceptional
conditions were raised in attempting to perform the requested
service. [OMG CORBA]

An object service which provides identifications of users
(authentication), controls access to resources (authorization), and
provides auditing of resource access. [OM G 95-03-31]

A process implementing one or more operations on one or more
objects. [OMG CORBA]

An object providing response to arequest for aservice. A given
object may be a client for some requests and a server for other
requests. [OM G CORBA]

April 23, 1996 63

signature

single inheritance

State

synchronous request

thread
transaction

transactional client

transaction context

transactional
operation

transaction originator

transaction manager

transactional object

transactional server

transaction service

transient object

two-phase commit

Business Object Facility

Defines the parameters of a given operation including their
number order, data types, and passing mode; the resultsif any;
and the possible outcomes (normal vs. exceptional) that might
occur. [OMG CORBA]

The construction of adefinition by incremental modification of
one definition. Contrast with multiple inheritance. [OM G
CORBA]

The time-varying properites of an object that affect that object’s
behavior. [OMG CORBA]

A reguest where the client pauses to wait for completion of the
request. Contrast with deferred synchronous request and one-
way request. [OMG CORBA]

The entity that is currently in control of the processor. [OMG
95-03-31]

A collection of operations on the physical and abstract
application state. [OM G 95-03-31]

An arbitrary program that can invoked operations of many
transactional objectsin asingle transaction. Not necessarily the
transaction originator. [OM G 95-03-31]

The transaction information associated with a specific thread.
[OMG 95-03-31]

An operation on an object that participates in the propagation of
the current transaction. [OM G 95-03-31]

An arbitrary program - typically, atransactional client, but not
necessarily an object - that begins atransaction. [OM G 95-03-
31]

A system comonent that implements the protocol engine for 2-
phase commit protocol. [OM G 95-03-31]

Strictly speaking, an object that offers at least one transactional
operation, and thus requiring the ORB and the Transaction
Service to propagate transaction context - but usually used to
refer to an object none of whose operations are affected by being
invoked within the scope of atransaction. [OM G 95-03-31]

A collection of one or more objects whose behavior is affected
by the transaction, but have no recoverable states of their own.
[OMG 95-03-31]

An Object Service that implements the protocols required to
guarantee the ACID (atomcity, consistency, isolation, and
durability) properties of transactions. [OM G 95-03-31]

An object whose existence is limited by the lifetime of the
process or thread that created it. [OMG CORBA]

A transaction manager protocol for ensuring that all changesto
recoverable resources occur atomically and furthermore, the
failure of any resource to complete will cause all other resource

April 23, 1996 64

to undo changes. [OM G 95-03-31]

typed event An event for which an interface is defined in terms of IDL.
[OMG 95-12-05]
Wrapper A software implementation which forms alayer surrounding

another implementation for the purposes of presenting interface
and functional behavior required by other implementations. The
need for wrappers often arises when migrating existing
applications to embrace a new, more advanced approach. This
typically occurs when migration is preferred to wholesale
replacement for cost/benefit reasons. [SEMATECH CIM]

3. RESOLUTION OF TECHNICAL AND NON-
TECHNICAL ISSUES

This section discusses how this submission meets the general technical and non-technical
requirements listed in Sections 4.3 and 4.4 of the RFP.

3.1 General Technical Reguirements
Interfaces shall be object-oriented and shall be expressed in OMG IDL

The Business Object Facility proposed follows a strictly object-oriented approach. All
objects, and all specification requirements placed on general objects, are given an OMG
IDL interface description.

Encapsulation isamajor design feature of the proposed interfaces. The interfaces as
proposed do not expose any implementation details, neither in the interface, nor by
describing expected performance profiles as part of the interface description. Special care
was taken to achieve a strict separation of interfaces and their possible implementations.

All interfaces are defined in OMG IDL following the IDL naming conventions for
interfaces, types, operations, attributes, and so on. The specification uses OMG IDL
conventions for exceptions and exception parameters.

Semantics beyond those expressiblein OMG IDL are expressed in English. Semantics
are also expressed formally using the mechanism defined by the Meta Object Facility.

* Proposed extensions to OMG IDL, CORBA, Object Services, and/or the OMG
Object Model shall beidentified

This specification is consistent with OMG IDL, CORBA, CORBA Services,

CORBAFacilities, and the OMG Object Model. It assumes that there exist good

implementations of existing CORBA specifications.

Business Object Facility April 23, 1996 65

Specification of complete business semantics are deferred to the Meta Object Facility and
the Object Analysis & Design metamodel.

One area of concern with current OMG specifications is with respect to collections.
There are now many forms of collections specifications, including those found in the
Collection Service, Query Service, Naming, Properties, Relationships, etc. Thereisa
need to establish uniformity, consistency, and generality among these redundant
specifications.

e Operation sequencing shall beincluded where applicable

For each operation a behavior description is given. Where applicable, operation
sequencing isincluded to describe the operation behavior. Behavior, protocol, and
sequencing of operations for business objects are further formalized in the Meta Object
Facility specification.

* OMG gpecifications shall not contain implementation descriptions
This specification does not contain any implementation descriptions. In afew cases
where possible implementations are sketched it is only to specify semantics and operation

sequencing.

* OMG gpecifications shall be complete
The specification to the best of our knowledge is complete. No “magic” isrequired on
the part of clients.

The creation of objectsis defined in the specification, and is defined in terms of the
Lifecycle Service.

* OMG Specifications should have precise descriptions
This specification describes all service behaviors, and the functions required from other
Services.

* Independence and modularity of Specifications

This specification explicitly requires modularity when implementing business object
specifications. However, the enforcement of implementation modularity means there are
dependencies between specifications and their implementations. Dependencies include,
for example, the requirement imposed on all business objects to inherit the specification
and implementation from the BusinessObject specification. Thisform of dependency is
inherent in OMG IDL, the dependency is practiced with CORBA Services, and is required
to realize the objectives of the general technical requirements which follow.

Furthermore, there isthe issue of context. Business object models for avertical domain
will specify semantics for common business objects within their domain. Another

Business Object Facility April 23, 1996 66

domain will specify additional semantics with respect to its domain. When these contexts
are combined, the semantics of both must be realized in the implementation. Although
the principle of independently specifying business objects and their semanticsis
supported through the Meta Object Facility, business object implementations must reflect
the aggregate semantic requirement.

In summary, the principle of independent context-dependent specifications are supported
viathe Meta Object Facility. Business Object implementations, of necessity, are
dependent upon multiple context-dependent specifications.

* Minimize duplication of functionality (the Bauhaus principle)

This specification is primarily a composition of other CORBAservices and
CORBAfacilities. The Business Object Facility minimizes duplication of functionality by
enforcing uniform use of existing specifications. Very little new functionality is
introduced by the Business Object Facility, the emphasisis on specifying semantic
constraints with respect to existing specifications in order to achieve the objectives of the
facility.

* No hidden interfaces among specifications

A specific objective of the Business Object Facility is that business object interfaces and
behaviors be specified sufficiently well so that implementations can be replaced and the
parts will still work together. The enforcement of implementation inheritance,

modul arity, and the rigorous formal specifications of Business Objects help ensure the
principle of plug and play components are achieved.

» Consistency among OM G specifications
Implementation inheritance, modularity, and rigorous formal specifications enforce
consistency between Business Object specifications.

» Extensbility of individual specifications
Extensibility mechanisms were examined in section “2.1.5 Extensibility of business
objects’, on page 14.

» Extending the collection of OM G specifications

Through enforced modul arization and implementation inheritance, this specification
should enable accomodation of new OMG specifications without impacting existing
business object design or implementation.

» Configurability
It should be possible to arbitrarily combine the Business Object Facility specification
with other OMG specifications.

Business Object Facility April 23, 1996 67

* Integrity, Reliability, and Safety of OM G specifications.

The Business Object Facility ensure the integrity, reliability, and safety of business
objects through incorporation of the OMG persistence, transaction, and concurrency
Services.

* Performance.

The Business Object Facility isacomposition of OMG specifications. Performance
guidelines accompanying each referenced OMG specification has guided the definition of
the Business Object Facility, ensuring that the facility itself is consistent with known
infrastructure performance trade-offs.

The performance of a business object model may depend upon the granularity of business
objects, distribution of business objects, and complexity of interdependency between
business objects. Theissue of business object performance must be evaluated in
conjunction with proposed business objects and models.

» Scalability.
Thisissue was detailed in section “2.1.7 Scalability”, on page 16.

» Portability.

The Business Object Facility, specified in OMG IDL, accommodates portability of
implementations across a wide range of platforms. IDL is programming language
independent. Furthermore, the specification may accomodate i mplementations on other
forms of infrastructure under some cases (see section “2.1.14 Generality and desktop
integration” on page 25).

» Consistency with Common Object Services Specifications (COSS)

The Business Object Facility is a composition of CORBAservices and CORBAfacilities.
It isfully consistent, compliant, and non-redundant with defined CORBA services and
CORBAfacilities. It utilizes the Lifecycle Object’ s Factory Service as needed to create
objects.

» Conventionsand guidelines
Conventions and guidelines defined, used or implied in this specification are consistent
with the information contained in Appendix C of the RFP.

* Mandatory versus optional interfaces
The Business Object Facility specification includes only mandatory interfaces.

» Constraintson object behavior

Business Object Facility April 23, 1996 68

Business Objects have their semantics formally specified in the Meta Object Facility.
Business Object implementations must take into account these extended (and possibly
dynamic) semantics.

* Integration with future OM G specifications

Through enforced modul arization and implementation inheritance, this specification
should enable accomodation of new OMG specifications without impacting existing
business object design or implementation.

3.2 Technical Criteria

3.2.1 Changeand Event Notification

Many forms of change notifications will be available from any business object without
explicit programming by the application developer. Business objects will be able to
request notification of events or changes in any other business object or class of object
and later cancel the request using standard business object facility services. Notification
messages will be in astandard form for all business objects. Notification will be
provided for many forms of changes that occur in any business object. This service will
be available in a consistent fashion across heterogeneous environments.

The OMG Event Service Specification is the basis for change and event notification
within the Business Object Facility. The Event Serviceis a general purpose service which
supports avariety of event communication requirements but is characterized by multiple
approaches such as Pull versus Push models and generic versus typed models. In order
to ensure interoperability between business objects, the Event Service must be used
consistently by all business objects. The following approach has been selected for
Business Objects:

The push model is used for suppliers.

The pull or push model is available for consumers.

Typed event models are used. This also supports the generic interface.

A BusinessObject is defined with both supplier and consumer interfaces.

Examples of event services which may be defined for each BusinessObjectinclude:
Parameter Change notification. Every addition, deletion, or value change to
parameters could result in an event.

Role change notification. Every addition or deletion of arole could result in an event.

3.2.2 ActiveViews

As models are developed and implemented, their size and complexity will grow. Thereis
aneed to be able to implement solutions to particular problems using simplified
abstractions of the enterprise model. Views, asintended here, are much like traditional
database views where aview is asimplified representation that excludes some attributes,
relationships and operations, and also flattens a complex structure. In addition, views can

Business Object Facility April 23, 1996 69

provide aliases and signature conversions for specific methods. Consequently, views
may be used to insulate individual applications from evolutionary changesin the
enterprise model. An active view is linked to the underlying objects such that attributes
and relationships represented in the view are kept current with the states of the underlying
objects.

The Object Query Service provides the mechanism for implementing the concept of
views with respect to arbitrarily complex configurations of business objects. More
specifically, the Query object provides the capability for composing, containing, and
executing query specifications (views). The execution of the Query will return aresult
reflecting current attributes, states, and relationships of underlying business objects.

3.2.3 Transparent Persistence

The implementation of persistence, in conjunction with standardized transaction,
concurrency, data recovery, and other services, ensures integrity, consistency, and
recoverability of configurations of business objects across heterogeneous environments.

All Business Objects are Persistent Objects. Implementation of persistence is not
specified for the Business Object Facility.

The OMG Persistence Service is one possible approach to implementation of business
object persistence. The Persistence Service helps to isolate data store technology from
business objects, enabling the end user to implement data storage technology according to
his evaluation of tradeoffs between availability, data integrity, resource consumption,
performance and cost. The selection criteria and acquisition of business objects, in these
cases, would be independent of data store technologies. There may be alternative
mechanisms for business object providers to isolate themsel ves from data store
technologies.

The Business Object Facility recommends, but does not enforce, isolation of data store
implementation from business object implementation. Following this recommendation
would facilitate the use and replacement of data store technology without reprogramming
any business objects.

3.2.4 Search mechanism
The Object Query Service provides the mechanism for implementing flexible predicate-
based searches over arbitrarily complex configurations of business objects.

3.2.5 Backout

Backout is the ability to restore an earlier state, e.g., as in termination of transactions. It
operates across heterogeneous environments so that related or dependent changes will be
backed out in a consistent fashion.

Business Object Facility April 23, 1996 70

The Business Object Facility uses the OMG Transaction Service and associated
mechanisms to implement backout (rollback operation). Each BusinessObject isa
Transactional Object.

3.2.6 Concurrency and Serialization

When concurrent transactions share objects, changes applied by one transaction process
may cause the processing of another transaction to be invalid. Serialization assures that
the actions of competing transactions are controlled in such away that the result is
equivalent to the transactions being executed one after another instead of concurrently.
Seridlization is achieved across heterogeneous environments to the extent that
transactions traverse multiple environments.

The Business Object Facility indirectly usesthe OMG Concurrency Control Service (asa
result of using the Transaction Service) to implement concurrency control, including
serialization of client requests, detection of deadlocks, suspension and resumption of
processes, and transaction contexts. Each BusinessObject is a Transactional Object.

3.2.7 Nested Transactions

It should be possible to implement business transactions that are invoked by other
business transactions and be assured that the serialization, recoverability, backout and
commitment of the associated transactions are handled properly. To achievethis, the
management of transactions must be consistent and coordinated across heterogeneous
environments.

The Business Object Facility uses the OMG Transaction Service to implement transaction
requirements, including nested transactions. Each BusinessObject isa
TransactionalObject. Recoverable Resources used by the BusinessObject are
subtransaction aware.

3.2.8 Referential Integrity and Garbage Collection

Referential integrity within the Business Object Facility is maintained through a
combination of Relationship, Persistence, Transaction, and Concurrency Services. The
Business Object Facility enforces referential integrity across all business objects, there
are never any “dangling” references to deleted business objects, and there is no need to
explicitly perform garbage collection. The referential integrity mechanism does not
require any explicit action by the programmer or user, it isimplemented automatically
when a business object is removed, according to the defined semantics of business objects
and their relationships.

3.2.9 Encapsulated attributes and relationships

A standard protocol is used to provide consistent interfaces, across all business objects, to
attributes and relationships. Attributes are specified and implemented according to the
CORBA IDL specification for “attribute” and the defined language mappings.

Business Object Facility April 23, 1996 71

Relationships are specified and implemented according to the syntax specified for the
Relationship service, with semantics specialized according to the specifications detailed
in this document. The Business Object Facility defines the mechanism for persistence,
transaction integrity, and concurrency to maintain the integrity of attributes and
relationships for all business objects.

3.2.10 Constraints, rulesand policies

The Meta Object Facility supports user specification of constraints, rules, and policies on
the business object model. Once these specifications have been verified for internal
consistency they are transformed into initialization policies, validation policies, roles, and
relationships. Initialization policies influence the creation of new business objects.
Validation policies dynamically control behavior, state, and relationships of al business
objects.

Many of the constraint/rule/policy specifications are enforced by the BusinessObject
itself, in conjunction with defined role and relationship semantics. For example,
BusinessObject enforces referential integrity constraints, relationship
constraints/invariants, and various forms of lifecycle dependency propagation. Each
Business Object uses persistence, transaction, and concurrency services to ensure system
integrity, that the system never commits an invalid state.

3.2.11 Relationship Management

Rel ationships between objects are complementary, each has access to the identity of the
other. They are consistently maintained without explicit programming by the application
devel oper.

The Business Object Facility manages relationships using the OM G Relationship Service.
Each Business Object inherits the Node Interface. Business Objects, in conjunction with
the Business Object Facility, enforce relationship semantics defined in the Meta Object
Facility. Features of the capability include:

Explicit business object model (Meta Object Facility) representation of relationships

and roles.

Type and cardinality constraints are explicitly expressed and validated.

The capability is extensible.

A BusinessObject is a Node (defined in Relationship Service). When a BusinessObject is
created, each explicitly defined Role of the Node is created. When Business Object
creation is complete, each Node is checked to ensure that its minimum cardinality
constraint satisfied (an exception israised if cardinality constraint violated during
creation). In addition to the Node itself, external objects may alter, add, or remove
relationships. The Relationship service will automatically maintain the following
relationship integrity rules:

Business Object Facility April 23, 1996 72

Following creation of a BusinessObject, minimum cardinality constraint of all of the
BusinessObject’ s Roles will be ensured. An exception will be raised if attempt is
made to reduce cardinality below minimum.

Maximum cardinality constraint of all BusinessObject’s Roles will be ensured. An
exception will beraised if attempt is made to increase cardinality above maximum.
Cascade delete. Request to delete a business object will result in propagation of
delete to each BusinessObject which would otherwise have minimum cardinality
constraint violated.

Referential inegrity. Each BusinessObject which refers to another related
BusinessObject, via arelationship, will always have the related BusinessObject also
referring to it.

3.2.12 External name management

External names, as used here, are identifiers used in the real world. A single business
concept may have several names which apply in different contexts. The Business Object
Facility defines a mechanism for accessing objects in a distributed environment using
names. The mechanism can be used to model the contexts and classifications used in the
real world.

The following mechanism may be used to implement the requirements for external name

management based on the Root interface:

- A set of roles may be associated with Root, each role representing a “context” or
classification. Each of these role definitions must be ultimately derived from one of
the Role interfaces.

The specification for Root is completed by specifying the remaining semantics of the
relationship, including relationship type and the reletant Business Object Node type.
A Business Object Node may be associated with multiple naming contexts (roles).
Any Business Object Node may be related to the Root viaarole. Implementation of
the capability is transparent to the Business Object Node.

Aswith any relationship supported by the Business Object Facility, full referential
integrity is ensured, relationship semantics are flexible, etc.

3.2.13 Exception/Fault Resolution

The Business Object Facility specifies the coupling between Business Application
Components (and consequently contained Business Objects) and the System Management
Facility. Recommendations from the System Management Facility with respect to
exception specification have been adopted. Based on these guidelines, exceptions
generated by servers, at the point of error detection, will include specific context and
error information for eventual presentation to the user. Asthe exception is returned,
servers that pass the exception through to clients may add additional information related
to the context or nature of the error. This approach allows an administrator to receive
more information about an exception than simply “something undesirable happened”.

Business Object Facility April 23, 1996 73

In addition to reporting the exception to the user, a mechanism is needed to support
analysis of the state of processes and to determine at what point they might be restarted.
Standard mechanisms are required to report, analyze, reconcile states and restart
processes when failures occur. These requirements are most appropriately addressed by
the Systems Management Facility. The Business Object Facility, through its coupling
with the Systems Management Facility, should be able to incorporate rel evant
specifications addressing these requirements, when they become available.

3.2.14 Configuration Management

In alarge, distributed, heterogeneous environment, it will be necessary to upgrade
business objects (and other components) without interrupting the operation of the
networked system. Thiswill include changes to the implementations of active business
objects and relationships which must be coordinated across heterogeneous environments.
A business object should be configurable after it has been delivered and deployed and
should be able to be subclassed and used by other business objects in unanticipated ways
without recourse to development. Business Objects should cooperate with other objects
in ways that do not bind them to a specific location or implementation.

Asdiscussed in section “2.1.8 Ease of development and deployment” on page 16, and
elsawhere, many of the semantics of the Business Object Model, including relationships
and configuration/tailoring options, can be reflected dynamically in deployed business
objects. This enables business objects to be upgraded within large, distributed,
heterogeneous environments without interrupting the operation of the networked system.

Consistent application of implementation inheritance semantics ensures that any Business
Object can be subclassed and used by other Business Objects. Furthermore, new
implementations of Business Object supertypes will be immediately inherited by all
subtypes. There will be no requirement to redevel op, rebind, or reimplement subordinate
Business Objects when a parent Business Object changes. Adherance to CORBA
standards ensure that Business Objects are |location and implementation transparent to
their clients. Implementation inheritance extends location and implementation
transparency to subclasses.

Implementation of managed change coordination to Business Meta Objects, Business
Objects, implementations, and Business Object instances are issues which are being
addressed by the Interface Type Versioning Management specification. Initial
submissions of these specifications are due July, 1996. The Interface Type Versioning
Management specification will be reflected in this Business Object Facility specification,
asrequired.

3.2.15 Composite Object Bounds

A composite object is a structure that represents a complex application concept with a
principal object and associated application component objects. Typically, if the principal
object is deleted, the application component objects will no longer be meaningful.

Business Object Facility April 23, 1996 74

Sometimes, however, a composite object may "contain” other composite objects as
components. Generally, the components of a composite object will be saved or moved
with the principle object and the principle object may have versions which incorporate
different component objects. The problem isto define the bounds of composite objects
and facilitate versioning, storage and transport of the composite as a unit consistently
across heterogeneous environments.

The Business Object Facility utilizes the OMG Relationship Service to facilitate
implementation of arbitrarily complex composite structures. The CosContainment
Module and the CosReference Module form the basis for the interface and semantics of
common composite business objects. Based on the Graph traversal semantics of the
Relationship Service, composite business objects can be manipulated, saved, moved,
externalized, versioned, etc., as a unit.

3.2.16 External Resource Representation

An objective of the Business Object Facility is to ensure isolation of Business Objects
from any form of presentation/device/external resource technology. Therefore, the
Business Object Facility intentionally omits any reference to external resources and
recommends that any future Business Object specifications avoid explicit referencesto
external resources.

External resources will, of course, be necessary to implement some business solutions.
The recommended architecture for these solutions involves the implementation of a
“mediator” between the business object and the external resource. Interaction with the
business object will include direct use of business object operations as well as use of the
event monitoring capability. The specification of such a mediator is beyond the scope of
this specification.

3.2.17 User Attributesand Preferences

Every Business Object supports user-defined properties. Users can add propertiesto
specific business objects or to the corresponding Meta Object (which appliesto all
Business Objects of that type). These properties can be referenced in queries, policy
constraints, or user-specified semantics (Business M eta Objects) which control behavior
of the Business Object.

3.2.18 Textual Representation

Business Objects are trand atable to and from various external forms, including textual
form, for storage, transport and editing. The external forms represent individual business
objects, arbitrary sets of multiple business objects, and graphs (as defined by the
Relationship Service) of business objects. Graphs comprehend arbitrarily complex
structures and traversal criteriaas well as handling detection and representation of cyclic
structures. The external forms include representations which are language and
environment independent.

Business Object Facility April 23, 1996 75

The Business Object Facility uses the OMG Externalization Service to render objects into
external form. Each BusinessObject inherits the Node Interface defined within the
CosCompoundExternalization Module.

3.2.19 Executable Object Expressions

There is aneed to be able to express operations on objects in the form of objects.
Applications need to be able to create and sometimes analyze executable expressions and
pass them from one computing environment to another. These may be used for rules or
constraints, or they may be used in executable blocks for exception handling, iteration, or
event processing. The language used to specify or display these expressions should be
independent of the particular programming environment.

This specification does not address this requirement, it is outside the scope of Business
Object Facility. The requirement should be addressed by some other facility. There are
currently no facilities on the OMG roadmap which address this requirement.

3.2.20 Loose binding

The Business Object Facility explicitly requires implementation inheritance and

modul arization (plug and play components), which in turn will require dynamic binding
between business objects.

Business Objects are fully CORBA compliant, meaning that they are location
independent, implementation independent, and programming language independent.

3.2.21 Instance Specialization

Instance specialization is the capability to add methods and state to an object instance to
incorporate unique capabilities. The extensions may be temporary for solution of a
unique problem, or they may be persistent for a continuing requirement. They may be
used to support analysis or reasoning about the object, or to evolve the representation of a
concept asit isdiscovered in the real world.

All Business Objects are based on a composition of CORBAservices. This enables any
Business Object instance to be dynamically specialized in the following ways:

New Properties may be added.

New Relationships may be established.

Events can be linked to new event channels, new events can be monitored.

The Business Object Facility does not provide a specification for how to dynamically add

methods to instances, the concept is fundamentally in conflict with the nature and intent
of OMG IDL.

Business Object Facility April 23, 1996 76

3.2.22 Réflection

Reflection is the ability of a system to analyze and report its state and activities and to
alter its state and activities based on thisanalysis. This requires the ability to examine
meta-information, call-paths and executable expressions. The ability should be ad hoc so
that active processes can be compiled for performance but switched to interpretation for
reflection. Such capabilities are important for such activities as exception resolution,
automatic code generation, interactive query, machine learning, performance tuning and
adaptation to particular users. Reflection should also support tools for analysis of system
performance, debugging, design of tests and failure mode analysis.

“Reflection” is beyond the scope of this specification. However, the Business Object
Facility, and its architectural relationship to other CORBA services and facilities,
facilitate implementations of the reflection concept in the following ways:

- Thereisatight coupling between Business Objects and Business Meta Objects.
Consequently, it is possible to navigate from the Business Object directly into the
Business Object Model. All semantics can be explored, al contractual obligations
between Business Objects can be analysed, interactive query can utilize defined
relationships between Business Objects, exception sources can be found.

The coupling with System Management can provide additiona information related to
performance analysis and tuning, failure analysis, recovery, and policy.

Automated code generation, test design, simulation, interpretative mode execution,
etc., are capabilities which can be based on the Business Object Model.

3.2.23 External interfaces

External systems, such as user interfaces or desktop programs have a known and
consistent interface to any business object. Thisinterfaceis defined in IDL and is
available viathe Interface Repository.

All Business Object constraints, dependencies, rules, and other semantics are fully
specified in the associated Business Meta Object. The mechanism for constructing,
implementing, or changing a Business Object is beyond the scope of this specification
and would be in conflict with the fundamental objective to isolate implementation from
specification. However, the Business Object Facility specifies that any Business Object
must enforce the semantics embodied in the Business Meta Object, including any
dynamically specifiable semantics.

3.3 Redationship with other Common Facilities, OM G Object Services,
CORBA and OMG Object Mod€

The Business Object Facility specification does not impose any particular or unique
implementation restrictions. There are no restrictions on the use of internal, hidden
interfaces or protocols with the underlying CORBA infrastructure, as long as the external
interface definition and the associated semantics are compliant with the specification.

Business Object Facility April 23, 1996 7

The following sections explain how the Business Object Facility, Business Application
Components, and Business Objects relate to the elements of the OMG architecture.

3.3.1 CORBA

The Business Object Facility, Business Objects, and Business Application Components
are defined in terms of the syntax and semantic scope of OMG IDL. The Meta Object
Facility enables formal specification of business semantics - this may be viewed as a
formalization of the english language semantic specification accompanying OMG IDL.

3.3.2 CORBAServices
Business Objects and the Business Object Facility are derived from, and/or use, the
following object services:

Persistent object service
Transaction service
Relationship service
Lifecycle service

Query service

Event service
Collections service

The Business Object Facility specifies the combination of these services required to meet
its objectives. In some cases, there are specializations of operation semantics. These
specializations are detailed in section “2.4

Interface Description: Behavior”, starting page 43.

3.3.3 CORBAFacilities
Business Objects and the Business Object Facility directly utilize the following Common
Facilities:
Meta Object Facility. Used to store and maintain the business object model,
including the full semantics for each Business Object type.
Systems management. Used to manage Business Application Components

The Business Object Facility specifies the combination of these facilities required to meet
its objectivesin section “2.4
Interface Description: Behavior”, starting page 43.

3.4 End User Requirements
The Business Object Facility specification addresses administration of objectsin the
following ways:

Business Object Facility April 23, 1996 78

3.4.1 LifeCycle
The Business Object Facility mandates the LifeCycleObject interface, plus a Factory
interface, for al Business Objects.

3.4.2 Installation/De-installation

Automated remote installation and deinstallation of features, including Business
Application Components, are intended to be provided through the System Management
Facility. The Business Object Facility is coupled with the System Management Facility.
The System Management Facility has not yet fully described the interfaces necessary to
implement remote installation and desinstallation.

3.4.3 Upgrade

Automated remote upgrade of the Business Object Facility, including Business
Application Components, is intended to be provided through the System Management
Facility. The Business Object Facility is coupled with the System Management Facility.
The System Management Facility has not yet fully described the interfaces necessary to
implement remote upgrade.

3.4.4 Performance Management

In order to support the management of large, heterogeneous OMA- compliant
environments, standard interfaces shall be defined which provide for the querying and
tuning of performance-critical resources.

Querying and tuning of performance-critical resourcesisintended to be provided through
the System Management Facility. The Business Object Facility is coupled with the
System Management Facility. The System Management Facility has not yet fully
described the interfaces necessary to tune performance-critical resources. Additionally,
the Business Object Facility architecture facilitates certain aspects of performance tuning
by isolating technology and modularizing Business Application Components. Thus:
- Data store technology can (sometimes, depending on implementation) be replaced or
tuned, transparent to Business Application Components.
Visualization and external interface tchnology can be replaced or tuned, transparent to
Business Application Components.
Any Business Application Component can be replaced or tuned, transparent to other
Business Application Components. Performance improvements associated with a
Business Application Component will be inherited transparently by all dependent
Business Objects.

3.4.5 Testing and Problem Deter mination / Resolution
All interface specifications for the Business Object Facility and Business Objects
explicitly include unique exception codes for each possible error condition.

Business Object Facility April 23, 1996 79

History of Business Object Facility object invocations is intended to be provided through
the System Management Facility. The Business Object Facility is coupled with the
System Management Facility. The System Management Facility has not yet fully
described the interfaces necessary to implement object invocation history.

Each Business Object is coupled with its Business Meta Object. The Business Meta
Object fully specifies the semantics of the Business Object, including a description of its
states. These state semantics are accessible through Business Meta Object interfaces.

The semantics aso include formal and rigorous specifications of all pre-conditions, post-
conditions, invariants, etc. These semantics can form the basis for a portion of testing. In
a broader sense, testing is part of the Business Object development lifecycle, and
consequently should be formally specified using the Analysis and Design Facility.

Problem determination/resolution is uniformally handled across all Business Objects, as
described in section “3.2.13 Exception/Fault Resolution” on page 73.

4. SPECIFICATION DEPENDENCIES

This specification take advantage of CORBAFacilities and CORBA Services that are
available, including:

Transaction service
Relationship service
Lifecycle service

Query service

Event service

Collections service

System Management Facility
Meta Object Facility

The Business Object Facility specifies combinations of these servicesto meet its
objectives, as detailed in section “2.4
Interface Description: Behavior”, starting page 43.

Some of the above specifications have not yet been adopted. Inclusion of the “Meta
Object Facility”, and other specifications, is speculative since RFPs have not even been
issued yet. Itispresumed that all OMG specifications have available technical
implementations, including the specifications which have not yet been adopted. The
following sections describe assumptions concerning specifications. These assumptions
are with respect to anticipated future specifications.

4.1 Meta Object Facility
module CfM etaObject{

Business Object Facility April 23, 1996 80

interface Meta: {};
¥

4.2 Object Analysis & Design Facility

4.3 System M anagement Facility

4.4 Notification and Messaging

4.5 Change M anagement

4.6 Replication

4.7 Logaing

5. RELATIONSHIP TO CORBA

The specification isfully CORBA compliant and does not propose any extension of
CORBA, including OMG IDL.

6. RELATIONSHIP TO OMG OBJECT MODEL

This specification conforms to the OMG Object Model.

/. STANDARDS CONFORMANCE

This specification is composed from existing OMG specifications, which in turn are
based on relevant existing industry standards, including the architecture for system
distribution defined in ISO/IEC 10746, Reference Model of Open Distributed Processing
(ODP).

8. OTHER INFORMATION

8.1 References

[OMG OMA] Object Management Architecture Guide, Revision 3.0.
[OMG CORBA] The Common Object Request Broker: Architecture and
Soecification, Revision 2.0, July 1995.

Business Object Facility April 23, 1996 81

[OMG 95-01-02]
[OMG 95-01-47]
[OMG 95-12-05]
[OMG 92-08-05]
[OMG 95-03-31]

[OMG 95-04-01]

[SEMATECH CIM]

Business Object Facility

Common Facilities Architecture, January 1995. OMG TC
Document 95-1-2

Object Services Architecture, Revision 1.1, January 1995. OMG
TC Document 95-1-47

Systems Management, Revision 2.0, December 6, 1995. OMG
TC Documents 95-12-02 through 95-12-06.

Object Services Roadmap, October, 1992. OMG TC Document
92-8-5

CORBAservices: Common Object Services Specification, March
31,1995. OMG TC Document 95-03-31

BOMS G white paper, OMG TC Document 95-4-1

Business Objects, Oliver Sims McGraw-Hill 0-
07-707957-4

Object Advantage, Ivar Jacobson Addison-Wesley 0-201-42289-
1

The Object-Oriented Enterprise Rob Mattison McGraw Hill

Business Engineering with object technology, David Taylor Wiley, 1995
Computer Integrated Manufacturing (CIM) Application
Framework Specification 1.2, March 31,1995. SEMATECH.
Technology Transfer 93061697E-ENG

April 23, 1996 82

