An Object Model for
Business Applications

By
Fred A. Cummins
Electronic Data Systems
Troy, Michigan
cummins@ae.eds.com

#H#

This presentation will focus on defining a model for objects--a
generalized representation to be used in the development of business
applications. In "business application" | am including any application
used in the operation of an enterprise. The enterprise might be
commercial business or it might be a government agency or an
academic institution. My purpose is to define a level of abstraction to
be supported by the Business Object Facility (BOF) that is the subject
of the RFP issued by the OMG Business Objects Domain Task Force.
My concern is that the BOF should greatly simplify the effort required by
application developers to develop solutions to business problems. | am
hopeful that this presentation will help potential submitters understand
the requirements | see for the BOF from an application developer's
perspective, so they can respond accordingly to the RFP.

Buginess Object Model

A computational abstraction:

» The conceptual basis for implementation of a
class of applications

 Incorporates general-purpose computational
mechanisms

2

The Business Object Model | will be discussing is a computational
abstraction. Itis the conceptual basis for implementation of a class of
applications. These applications represent problems that would exist
with or without computers. They are problems where objects are used
to represent business concepts and model problem situations.

The Business Object Model incorporates general purpose
computational mechanisms. As such, the model conceals
computational problems from the concern of the application developer,
allowing him or her to concentrate on modeling the business problem.

Negd for a Business Object Model

* To minimize the transformation required to
implement models of business domains

» To conceal computational mechanisms
necessary to support applications in a
distributed, heterogeneous environment

» To assure compatibility of independently
developed components

» To enable integration of intelligence:
constraints, agents, expert rules, adaptive
mechanisms

3

Why do we need a Business Object Model that is different from the model
of objects used for other computations?

First, we should minimize the transformation effort required to implement
models for business domains. This is important for development of
flexible systems that meet user requirements. The more involved the
transformation, the greater the difficulty in meeting user requirements.

Second, we should conceal computational mechanisms necessary to
support applications in a distributed, heterogeneous environment. OMG
technology has introduced several new dimensions of complexity which
will increase the effort and risk of application development if these
problems must be solved in every project by application developers.

Third, we must assure compatibility of independently developed
components. Application developers must ensure the compatibility of the
business concepts and methods, but there must also be compatibility of
underlying mechanisms such as transaction management, concurrency,
relationship management, notification and persistence. Without this
compatibility, we cannot hope to develop a marketplace in sharable
business application components.

Fourth, with a higher level of abstraction and a stable architecture, we can
begin to integrate intelligence into business applications with such
mechanisms as constraints, agents, expert rules and adaptive
mechanisms. Today, such capabilities are limited in scope and difficult to
integrate because of inconsistencies and inaccessibility of information
across business applications.

Enterprise Model

2]

3 User Interface Objects _

=3 Business
= Objects
(O]

(@]

<

Application Objects

< Enteprise Objects >
©® Cummins & Sadiq 4

This Enterprise Model illustrates where | see business objects used.
This model is similar to the three-tiered model with a couple exceptions.
First of all, the bottom layer is not data storage, but rather business
objects that are shared across the enterprise. Data storage, or
persistence, should be orthogonal to the design of business
applications--it should be automatic. Secondly, agents are added as
mechanisms for monitoring and directing activities in the other layers.
These might be workflow management components, expert systems or
intelligent tutors, for example.

Business objects exist in the enterprise objects and application objects
layers. As | mentioned, the enterprise objects implement concepts that
are shared by many applications. They model the business as a whole.
Application objects model a particular problem or segment of the
business. Many of the application objects will be views of enterprise
objects and there must be an active linkage between these layers.

The use of views to separate the enterprise and application layers
allows these models to evolve relatively independently. Because the
interface is through methods, when changes occur in the enterprise
model the affected view methods may be modified to adapt to the
change without otherwise affecting the applications. When applications
change, the effects need not extend to the enterprise model unless the
extension should be shared across the enterprise. Views also allow
applications to work with a simplified representation that is sufficient for
the application but maps to a more robust representation for the
enterprise-wide model. The same basic mechanism should be used to
attach agents and user interfaces.

User Interface Objects

Application Objects

< Enteprise Objects >

Objects used to represent concepts that occur in an
enterprise (business) for performing computations
or maintaining information about the enterprise.

Concepts

Agent Objects

“Buisiness” Objects

» Would exist in a non-computer solution

» Range from enterprise-independent to
situation-unique

» Could be represented with large-grained or
fine-grained objects

* Represented independent of programming

language, operating system, database, or EDS
other computing facilities 5

This slide refines the concept of a business object for purposes of this
discussion. Business objects are used to represent concepts that occur
in an enterprise, or business, for performing computations or
maintaining information about the enterprise.

These concepts would exist in a non-computer solution to the business
problem--they are not concepts that are necessary to make computers
useful. For example, graphical display objects are not business
objects.

Business objects include large-grained and fine-grained objects. They
implement a wide range of concepts.

Finally, the concepts being represented are independent of
programming language, operating system, database, or other
computing facilities. The concepts do not depend on computational
implementations, but on the nature of the enterprise.

A “Business Object” Example

CustomerOrder

OrderNumber
|

Date

Customer

Items

TotalPrice

Here is an example of a business object: a customer order. The
smaller boxes represent functional interfaces to the order which will get
or put information or perform operations.

The OrderNumber, Date and TotalPrice interfaces will return
elementary values--1 refer to these as attributes.

The Customer and Items interfaces return references to other
structured objects--1 refer to the Customer and Items interfaces as
relationships. The objects they reference may have complementary
references.

The Ship interface invokes an operation (i.e., ship the order).

| refer to this object as a "composite" object because, semantically, the
Items referenced by the order are part of the order. They represent the
specification of parts and quantities requested by the customer.
Generally, the order and the items will be used as a unit.

| will use this object example in further discussions.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: ltems » Composite object
: bounds
TotalPrice * View
|
T 7

These are characteristics of business objects that are important for the
application developer. They represent the level of abstraction at which
application developers should work.

First, business objects are used in a “context” that must be accessible
to the application. This context includes such things as user
preferences, organizational affiliation, and default I/O devices such as
the user's printer. This context must be available even though the
processing associated with the application may extend to other
computers in a distributed environment.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: it » Composite object
| ems bounds
TotalPrice * View
|
T 8

Business objects, for the most part, have identifiers that are used by
humans to reference the objects. For example, order number as well
as social security number, employee number, vehicle ID, part number,
customer name, city name, and product name are all external
identifiers. These must be interpreted in a context since the identity of
an employee or an order, for example, must be determined by
reference to the enterprise. Whenever one of these objects becomes
the target of processing, these external identifiers must be translated to
the identity of an active object even though the object may not currently
be active--it may only exist in a database.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: ltems » Composite object
: bounds
TotalPrice * View
|
T 9

| use the term aspect to define interfaces associated with attributes or
relationships of an object. At an elementary level, an aspect provides
get and put methods for a value associated with the object. However,
some aspects may return computed rather than stored values. For
example, TotalPrice is probably a computed value. Furthermore, the
implementation of aspects must include functionality to support related
computational mechanisms which I will discuss later. For example, in
order for aspects to support change notification, the put methods must
generate appropriate notices when a value is changed.

Buginess Object Model

CustomerOrder

OrderNumber

Date

Context
External Identifier
Aspect

Customer

Operation

ltems

TotalPrice

Ship

Transaction

Composite object
bounds

View

10

Operations are methods that perform actions--they implement business
processes. These processes should propagate to other computers and
objects implemented in other programming languages without
application programmer concern about destruction of objects
inadvertently created, concurrency conflicts with other processes or
retrieval of referenced objects from a database. Programming of these
methods should be essentially the same as if all of the objects
referenced were in a single computing environment.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: i » Composite object
| ems bounds
TotalPrice * View
|
1 11

Transactions must be visible to the application developer from the
standpoint that the developer must define when a transaction starts and
terminates, either successfully or unsuccessfully. Transactions are a
business concern and must be defined in a manner that is consistent
with the way the user does his or her work. At the same time, of
course, transactions affect other mechanisms that should be concealed
from the developer, such as concurrency control. For example, if a user
is going to update information on an order, a transaction should be
initiated for that activity. If the update is completed successfully, then
the transaction should be committed, and the user should be aware of
its acceptance. If the user attempts to enter unacceptable information
or decides to abandon the changes, then the transaction should be
terminated and any tentative changes should be backed out--the user
should also be aware of this action.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: ltems » Composite object
: bounds
TotalPrice * View
|
1 12

| noted earlier that the customer order is a composite object--it has item
objects that are part of the order. These item objects should be
included when the order is copied or cancelled, but the parts that are
referenced by the items should not be included in such operations.
Consequently, the relationships between objects that are part of the
order and other objects external to the order--such as parts--must, in
some way, be identified as limiting the bounds of the order. Such
specifications should be indicated on the aspects that define the
boundary relationships, but the imlementation of this designation should
be concealed from programmer concern.

Buginess Object Model

CustomerOrder
I e Context
OrderNumber « External Identifier
|
Date » Aspect
, » Operation
Customer e Transaction
: e » Composite object
| ems bounds
TotalPrice * View
|
1 13

Finally, application developers should be given views for their local
representation of enterprise concepts. Views are a special form of
application business objects. These views must participate in
application processing as local objects and may have local aspects and
operations. But they must also be linked to the corresponding
enterprise objects so that updates to state directed to views are
propagated to the enterprise objects, and updates to the enterprise
objects are propagated to the views of other applications that are
actively working with the shared information.

Views may also simplify the representation of a business concept so
that a complex structure in the enterprise model might be simplified to a
single view for a particular application. For example, a participant in a
project might be represented as a single object for a project
management application, while that single object might incorporate
information obtained from the full employee object and related person
object in the enterprise model

In addition to providing simplified representations and adaptive
interfaces for applications, views also provide a mechanism for security
control. A view will define those aspects and operations available to the
user of the view. For example, a project manager view of an employee
would exclude salary information.

Integrated Facilities

CustomerOrder
I » Relationship management
OrderNumber « Persistence
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Iltems , :
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
| 14

Now lets turn to the facilities that should be integrated into the Business
Object Facility. The implementation of these facilities should not
concern the application developer.

Relationships between objects should be incorporated in the
implementation of the “aspects” | mentioned earlier. When an object is
added or removed from a relationship, complementary relationships
should be updated appropriately without explicit programmer action.

In the example, the addition of an item to the order should update the
Items relationship including a reference from the new item object back
to the order.

Relationship management must also handle the difference between
references to objects that are “part of” a composite object, and objects
that are just referenced. When a non-part-of relationship is
externalized--moved to a file or database, the references should be
converted to the associated external identifiers. The elements of a
composite object will generally be stored together and may be linked by
local references appropriate to the storage medium.

In the example, items are part of the order, but references between
items and parts are not “part of” relationships.

Integrated Facilities

CustomerOrder

OrderNumber

Relationship management

Persistence

Date

Customer

ltems

TotalPrice

Ship

Concurrency control
Change notification
Constraint resolution
Logical search
Configuration management
Reference resolution

Garbage collection
EDS
15

Persistence should be invisible to the application developer except that
an object should be designated as persistent or non-persistent in a way
that is independent of application logic. When a message is sentto a
persistent object, the object should be automatically retrieved from the
database if it is not already active. When an update transaction is
committed, all persistent objects that were updated by that transaction
should automatically be written to the database.

grated Facilities

CustomerOrder

OrderNumber

Relationship management
Persistence

Date

Concurrency control

Customer

ltems

TotalPrice

Ship

Change notification
Constraint resolution
Logical search
Configuration management
Reference resolution

Garbage collection
EDS
16

Concurrency control should likewise be invisible to the application
developer. Concurrency control, for this purpose, means assuring
transaction serialization. The net effect of processing of a group of
transactions should be the same as if they were executed serially, one
after another. Locking and deadlock detection should be handled
automatically.

Integrated Facilities

CustomerOrder
[» Relationship management
OrderNumber « Persistence
|
Date « Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Items i .
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
1 17

Change notification is a service that should be available for all business
objects. For example, an account manager might be interested in
knowing if the total price of an order changes. The monitoring facility
would request change notification on the TotalPrice aspect for orders of
interest. In general, most orders would not generate these events
because nobody is interested.

Change notification is not the same as event notification as currently
defined in OMG. A request for change notification is directed to a
specific object instance for notification of change to a particular aspect.
OMG event notification is based on a request to a service for notice of
any occurrence of an event type; it requires that all sources of events
which may be of interest always notify the service of the occurrence of
any such event. The granularity is very different. Change notification is
necessary to drive displays, agents and active views. The notification
mechanism should be automatically incorporated in object aspects.

Integrated Facilities

CustomerOrder
I » Relationship management
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Items . .
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
| 18

Constraints are a very important facility that has not been well
developed for object-oriented applications. Constraints provide a
declarative means to apply business rules and assure model
consistency and integrity.

For example, a constraint might limit the TotalPrice of an order based
on the customer’s credit limit.

Constraint propagation provides a valuable mechanism for manipulation
of complex models such as engineering designs. The mechanism for
attachment and resolution of constraints should be invisible to the
application developer.

Integrated Facilities

CustomerOrder
[» Relationship management
OrderNumber « Persistence
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Items - -
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
1 19

Searches in the business objects environment, i.e., queries, should be
logical searches based on the conceptual model, not searches based
on physical structures. For example, SQL queries require that the user
understand the table structure of the database. The scope of an SQL
query is the scope of the database. These are physical characteristics
of the implementation which should not be visible to either the
application user or the developer.

A logical search should be based on the conceptual model, the context
of the request and logical definitions of facts. The search should not be
restricted to objects that are persistent. And the search mechanism
should be integrated into the environment, not restricted by the
boundaries of computer and data storage devices.

Integrated Facilities

CustomerOrder
I » Relationship management
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
ltems . .
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
1 20

Application developers also need facilities to support configuration
management. Developers must be able to package application
components and deploy versions of those components. Components
and their versions will have dependencies on other components and
versions. This is challenging when configuring a single-computer
application; it can be a nightmare when dealing with a distributed
computing environment with workstations of varying configurations
depending upon user requirements and authorization. Configuration
management should also consider security controls and workstation
hardware constraints.

Integrated Facilities

CustomerOrder
I » Relationship management
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Items . .
, Configuration management
TotalPrice » Reference resolution
' - » Garbage collection
Ship EDS
| 21

Object references should be resolved without application developer
involvement. If an application has a reference to an object, that
reference should be guaranteed viable unless an unrecoverable error
has occurred. If the object is persistent but is not currently active, then,
if a message is sent to it, it should be automatically retrieved from the
data base without explicit programming by the application developer.

Integrated Facilities

CustomerOrder
[» Relationship management
OrderNumber « Persistence
|
Date » Concurrency control
I » Change notification
Customer « Constraint resolution
: « Logical search
Items i .
, Configuration management
TotalPrice » Reference resolution
' - « Garbage collection
Ship EDS
1 22

Finally, objects that are no longer in use should be automatically
garbage collected. This applies to objects in computer memory and
objects in databases. Application developers should not need to worry
about explicit destruction of objects or memory leaks. When an object
is no longer referenced in any environment then it should be destroyed.
This is particularly critical when objects are shared by multiple
applications and users. Automatic garbage collection requires
mechanisms to resolve remote references and mechanisms to detect
and update accounting for references by remote nodes that have failed.

AGarbage collection and all of the above facilities must function
consistently across ORB domains so that application developers need
not be concerned with the distribution of their applications or related
objects. This is essential for meaningful interoperability of business
applications.

User Interface Objects

Application Objects

Summary

Agent Objects

N

Enteprise Objects >

* Minimal modeling transformation
» Easy to develop applications

» Large-scale integration

» Compatible components

» Heterogeneous environments

* Build on accomplishments

23

In summary, the implementation of this abstraction with the Business Object Facility
will have very important benefits.

The transformation of analysis models to application implementations will be minimal,
improving the productivity of developers and the flexibility and effectiveness of
applications.

It will be easy to develop applications in distributed, heterogeneous environments
because application developers generally will not need to be concerned about the
added complexity.

Such facilities will enable large-scale integration. The enterprise model described
allows applications and enterprise objects to evolve while the scope of impact of
changes is confined (using views as adaptors). This enables sharing across many
applications and business functions.

We can reasonably expect that independent developers will be able to produce
compatible components because the architecture and computational mechanisms
will be consistent, and developers need only concentrate on defining consistent
business semantics and protocols.

These systems can be expected to operate in heterogeneous environments because
application developers will be shielded from the differences between environments.
When new software releases or computing platforms are introduced, there will be no
need to redevelop applications.

Finally, we will be able to start building on our accomplishments instead of starting
from scratch over and over again to adapt to new technology. We can start to exploit
more sophisticated techniques to incorporate intelligence, facilitate collaborative
work, and achieve enterprise-level optimizations rather than sub-optimal, local
solutions.

Thank you for your attention.

